mirror of
https://chromium.googlesource.com/crosvm/crosvm
synced 2024-11-25 05:03:05 +00:00
4be56406b6
crosvm has never actually supported running on a 32-bit x86 host, only x86-64. Remove the cfg(target_arch = "x86") checks throughout the tree to make this clear (and to simplify the code). This doesn't affect the code running inside the guest, which can still be a 32-bit x86 operating system if launched via --bios, for example. BUG=None TEST=tools/dev_container tools/presubmit Change-Id: Ifd888db54c58ec8a5fcf840871ef564771d9066b Reviewed-on: https://chromium-review.googlesource.com/c/crosvm/crosvm/+/4794387 Commit-Queue: Daniel Verkamp <dverkamp@chromium.org> Reviewed-by: Zihan Chen <zihanchen@google.com> Reviewed-by: Dennis Kempin <denniskempin@google.com>
137 lines
5.4 KiB
Rust
137 lines
5.4 KiB
Rust
// Copyright 2017 The ChromiumOS Authors
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#![cfg(target_arch = "x86_64")]
|
|
// Test applies to whpx only.
|
|
#![cfg(all(windows, feature = "whpx"))]
|
|
|
|
use std::sync::atomic::AtomicU16;
|
|
use std::sync::atomic::Ordering;
|
|
|
|
use hypervisor::*;
|
|
use vm_memory::GuestAddress;
|
|
use vm_memory::GuestMemory;
|
|
|
|
// This test case is for the following scenario:
|
|
// Test sets up a guest memory instruction page, such that an instruction
|
|
// straddles across a page boundary. That is, the bytes for the instruction are
|
|
// split between end of first page and start of the next page. This triggers
|
|
// WHV_EMULATOR to perform an "MMIO" load which is just a memory read from the
|
|
// second page.
|
|
#[test]
|
|
fn test_whpx_mmio_fetch_memory() {
|
|
use hypervisor::whpx::*;
|
|
/*
|
|
0x0000000000000000: 67 88 03 mov byte ptr [ebx], al
|
|
0x0000000000000003: 67 8A 01 mov al, byte ptr [ecx]
|
|
0x000000000000000a: F4 hlt
|
|
*/
|
|
|
|
// Start executing the following instructions on the last byte of the page
|
|
// so that the instruction emulator needs to fetch it from the next page
|
|
// first.
|
|
// If `code` or `load_addr` is changed, the memory load on line 89 will need
|
|
// to be updated.
|
|
let code = [0x67, 0x88, 0x03, 0x67, 0x8a, 0x01, 0xf4];
|
|
let load_addr = GuestAddress(0x0fff);
|
|
let mem_size = 0x2000;
|
|
|
|
let guest_mem =
|
|
GuestMemory::new(&[(GuestAddress(0), mem_size)]).expect("failed to create guest mem");
|
|
guest_mem
|
|
.write_at_addr(&code[..], load_addr)
|
|
.expect("failed to write to guest memory");
|
|
|
|
if !Whpx::is_enabled() {
|
|
panic!("whpx not enabled!");
|
|
}
|
|
|
|
let whpx = Whpx::new().expect("failed to create whpx");
|
|
let vm =
|
|
WhpxVm::new(&whpx, 1, guest_mem, CpuId::new(0), false, None).expect("failed to create vm");
|
|
|
|
let mut vcpu = vm.create_vcpu(0).expect("new vcpu failed");
|
|
let mut vcpu_sregs = vcpu.get_sregs().expect("get sregs failed");
|
|
vcpu_sregs.cs.base = 0;
|
|
vcpu_sregs.cs.selector = 0;
|
|
|
|
vcpu.set_sregs(&vcpu_sregs).expect("set sregs failed");
|
|
|
|
let vcpu_regs = Regs {
|
|
rip: load_addr.offset() as u64,
|
|
rflags: 2,
|
|
rax: 0x33,
|
|
rbx: 0x3000,
|
|
rcx: 0x3010,
|
|
..Default::default()
|
|
};
|
|
vcpu.set_regs(&vcpu_regs).expect("set regs failed");
|
|
|
|
// Ensure we get exactly 2 exits for the mmio read and write.
|
|
let exits = AtomicU16::new(0);
|
|
// Also, ensure that we have 2 "mmio" reads, one for reading execution page
|
|
// and the second one for unmapped data page.
|
|
let memory_reads = AtomicU16::new(0);
|
|
// And ensure that 1 write is performed.
|
|
let memory_writes = AtomicU16::new(0);
|
|
|
|
loop {
|
|
match vcpu.run().expect("run failed") {
|
|
VcpuExit::Mmio => {
|
|
exits.fetch_add(1, Ordering::SeqCst);
|
|
vcpu.handle_mmio(&mut |IoParams {
|
|
address,
|
|
size,
|
|
operation,
|
|
}| {
|
|
match operation {
|
|
IoOperation::Read => {
|
|
memory_reads.fetch_add(1, Ordering::SeqCst);
|
|
match (address, size) {
|
|
// First MMIO read from the WHV_EMULATOR asks to
|
|
// load the first 8 bytes of a new execution
|
|
// page, when an instruction crosses page
|
|
// boundary.
|
|
// Return the rest of instructions that are
|
|
// supposed to be on the second page.
|
|
(0x1000, 8) => {
|
|
// Ensure this instruction is the first read
|
|
// in the sequence.
|
|
assert_eq!(memory_reads.load(Ordering::SeqCst), 1);
|
|
Some([0x88, 0x03, 0x67, 0x8a, 0x01, 0xf4, 0, 0])
|
|
}
|
|
// Second MMIO read is a regular read from an
|
|
// unmapped memory.
|
|
(0x3010, 1) => Some([0x66, 0, 0, 0, 0, 0, 0, 0]),
|
|
_ => {
|
|
panic!("invalid address({:#x})/size({})", address, size)
|
|
}
|
|
}
|
|
}
|
|
IoOperation::Write { data } => {
|
|
assert_eq!(address, 0x3000);
|
|
assert_eq!(data[0], 0x33);
|
|
assert_eq!(size, 1);
|
|
memory_writes.fetch_add(1, Ordering::SeqCst);
|
|
None
|
|
}
|
|
}
|
|
})
|
|
.expect("failed to set the data");
|
|
}
|
|
VcpuExit::Hlt => {
|
|
break;
|
|
}
|
|
// Continue on external interrupt or signal
|
|
VcpuExit::Intr => continue,
|
|
r => panic!("unexpected exit reason: {:?}", r),
|
|
}
|
|
}
|
|
|
|
assert_eq!(exits.load(Ordering::SeqCst), 2);
|
|
assert_eq!(memory_reads.load(Ordering::SeqCst), 2);
|
|
assert_eq!(memory_writes.load(Ordering::SeqCst), 1);
|
|
let regs = vcpu.get_regs().expect("get_regs() failed");
|
|
assert_eq!(regs.rax, 0x66);
|
|
}
|