crosvm/hypervisor/tests/mmio_fetch_memory.rs
Daniel Verkamp 4be56406b6 Remove target_arch = "x86" checks
crosvm has never actually supported running on a 32-bit x86 host, only
x86-64. Remove the cfg(target_arch = "x86") checks throughout the tree
to make this clear (and to simplify the code).

This doesn't affect the code running inside the guest, which can still
be a 32-bit x86 operating system if launched via --bios, for example.

BUG=None
TEST=tools/dev_container tools/presubmit

Change-Id: Ifd888db54c58ec8a5fcf840871ef564771d9066b
Reviewed-on: https://chromium-review.googlesource.com/c/crosvm/crosvm/+/4794387
Commit-Queue: Daniel Verkamp <dverkamp@chromium.org>
Reviewed-by: Zihan Chen <zihanchen@google.com>
Reviewed-by: Dennis Kempin <denniskempin@google.com>
2023-08-18 23:36:47 +00:00

137 lines
5.4 KiB
Rust

// Copyright 2017 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#![cfg(target_arch = "x86_64")]
// Test applies to whpx only.
#![cfg(all(windows, feature = "whpx"))]
use std::sync::atomic::AtomicU16;
use std::sync::atomic::Ordering;
use hypervisor::*;
use vm_memory::GuestAddress;
use vm_memory::GuestMemory;
// This test case is for the following scenario:
// Test sets up a guest memory instruction page, such that an instruction
// straddles across a page boundary. That is, the bytes for the instruction are
// split between end of first page and start of the next page. This triggers
// WHV_EMULATOR to perform an "MMIO" load which is just a memory read from the
// second page.
#[test]
fn test_whpx_mmio_fetch_memory() {
use hypervisor::whpx::*;
/*
0x0000000000000000: 67 88 03 mov byte ptr [ebx], al
0x0000000000000003: 67 8A 01 mov al, byte ptr [ecx]
0x000000000000000a: F4 hlt
*/
// Start executing the following instructions on the last byte of the page
// so that the instruction emulator needs to fetch it from the next page
// first.
// If `code` or `load_addr` is changed, the memory load on line 89 will need
// to be updated.
let code = [0x67, 0x88, 0x03, 0x67, 0x8a, 0x01, 0xf4];
let load_addr = GuestAddress(0x0fff);
let mem_size = 0x2000;
let guest_mem =
GuestMemory::new(&[(GuestAddress(0), mem_size)]).expect("failed to create guest mem");
guest_mem
.write_at_addr(&code[..], load_addr)
.expect("failed to write to guest memory");
if !Whpx::is_enabled() {
panic!("whpx not enabled!");
}
let whpx = Whpx::new().expect("failed to create whpx");
let vm =
WhpxVm::new(&whpx, 1, guest_mem, CpuId::new(0), false, None).expect("failed to create vm");
let mut vcpu = vm.create_vcpu(0).expect("new vcpu failed");
let mut vcpu_sregs = vcpu.get_sregs().expect("get sregs failed");
vcpu_sregs.cs.base = 0;
vcpu_sregs.cs.selector = 0;
vcpu.set_sregs(&vcpu_sregs).expect("set sregs failed");
let vcpu_regs = Regs {
rip: load_addr.offset() as u64,
rflags: 2,
rax: 0x33,
rbx: 0x3000,
rcx: 0x3010,
..Default::default()
};
vcpu.set_regs(&vcpu_regs).expect("set regs failed");
// Ensure we get exactly 2 exits for the mmio read and write.
let exits = AtomicU16::new(0);
// Also, ensure that we have 2 "mmio" reads, one for reading execution page
// and the second one for unmapped data page.
let memory_reads = AtomicU16::new(0);
// And ensure that 1 write is performed.
let memory_writes = AtomicU16::new(0);
loop {
match vcpu.run().expect("run failed") {
VcpuExit::Mmio => {
exits.fetch_add(1, Ordering::SeqCst);
vcpu.handle_mmio(&mut |IoParams {
address,
size,
operation,
}| {
match operation {
IoOperation::Read => {
memory_reads.fetch_add(1, Ordering::SeqCst);
match (address, size) {
// First MMIO read from the WHV_EMULATOR asks to
// load the first 8 bytes of a new execution
// page, when an instruction crosses page
// boundary.
// Return the rest of instructions that are
// supposed to be on the second page.
(0x1000, 8) => {
// Ensure this instruction is the first read
// in the sequence.
assert_eq!(memory_reads.load(Ordering::SeqCst), 1);
Some([0x88, 0x03, 0x67, 0x8a, 0x01, 0xf4, 0, 0])
}
// Second MMIO read is a regular read from an
// unmapped memory.
(0x3010, 1) => Some([0x66, 0, 0, 0, 0, 0, 0, 0]),
_ => {
panic!("invalid address({:#x})/size({})", address, size)
}
}
}
IoOperation::Write { data } => {
assert_eq!(address, 0x3000);
assert_eq!(data[0], 0x33);
assert_eq!(size, 1);
memory_writes.fetch_add(1, Ordering::SeqCst);
None
}
}
})
.expect("failed to set the data");
}
VcpuExit::Hlt => {
break;
}
// Continue on external interrupt or signal
VcpuExit::Intr => continue,
r => panic!("unexpected exit reason: {:?}", r),
}
}
assert_eq!(exits.load(Ordering::SeqCst), 2);
assert_eq!(memory_reads.load(Ordering::SeqCst), 2);
assert_eq!(memory_writes.load(Ordering::SeqCst), 1);
let regs = vcpu.get_regs().expect("get_regs() failed");
assert_eq!(regs.rax, 0x66);
}