crosvm/tests/plugin_irqfd.c
Zach Reizner ce8961d1fc allow non-dirty log memory regions from the plugin process
Dirty logging is not necessary for every memory region, so the plugin
process should be able to specific exactly which regions it would like
dirty logging enabled for.

TEST=cargo test --features plugin
BUG=chromium:800626

Change-Id: I28b8285357e7de1c8c3a1392bdfdb4853ec5a654
Reviewed-on: https://chromium-review.googlesource.com/900294
Commit-Ready: Zach Reizner <zachr@chromium.org>
Tested-by: Zach Reizner <zachr@chromium.org>
Reviewed-by: Dylan Reid <dgreid@chromium.org>
2018-02-12 22:42:37 -08:00

218 lines
5.6 KiB
C

/*
* Copyright 2017 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <errno.h>
#include <fcntl.h>
#include <linux/memfd.h>
#include <pthread.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <time.h>
#include <unistd.h>
#include "crosvm.h"
#ifndef F_LINUX_SPECIFIC_BASE
#define F_LINUX_SPECIFIC_BASE 1024
#endif
#ifndef F_ADD_SEALS
#define F_ADD_SEALS (F_LINUX_SPECIFIC_BASE + 9)
#endif
#ifndef F_SEAL_SHRINK
#define F_SEAL_SHRINK 0x0002
#endif
#define LOAD_ADDRESS 0x1000
#define STACK_BASE (LOAD_ADDRESS + 0x1000)
#define STACK_SIZE 0x1000
#define SUCCESS_ADDRESS 0x3000
#define KILL_ADDRESS 0x4000
/*
org 0x1000
bits 16
cli
; Set entry 0x0 in the interrupt vector table
mov word [0x0], handle
mov word [0x2], 0x0
sti
; Loop until interrupt is handled
loop:
cmp byte [si], 0x01
jne loop
cli
; Signal that we are ready to end
end:
mov byte [es:0], 0x01
hlt
; Handle the interrupt by halting
handle:
mov byte [si], 0x01
iret
*/
const uint8_t g_code[] = {
0xfa, 0xc7, 0x06, 0x00, 0x00, 0x1b, 0x10, 0xc7, 0x06, 0x02, 0x00, 0x00,
0x00, 0xfb, 0x80, 0x3c, 0x01, 0x75, 0xfb, 0xfa, 0x26, 0xc6, 0x06, 0x00,
0x00, 0x01, 0xf4, 0xc6, 0x04, 0x01, 0xcf
};
struct vcpu_context {
struct crosvm_vcpu *vcpu;
int irqeventfd;
int kill_evt;
};
void *vcpu_thread(void *arg) {
struct vcpu_context *ctx = arg;
struct crosvm_vcpu *vcpu = ctx->vcpu;
struct crosvm_vcpu_event evt;
uint64_t dummy = 1;
int i = 0;
int ret;
while (crosvm_vcpu_wait(vcpu, &evt) == 0) {
if (evt.kind == CROSVM_VCPU_EVENT_KIND_INIT) {
struct kvm_sregs sregs;
crosvm_vcpu_get_sregs(vcpu, &sregs);
sregs.cs.base = 0;
sregs.cs.selector = 0x0;
sregs.ss.base = 0;
sregs.ss.selector = 0x0;
sregs.es.base = KILL_ADDRESS;
sregs.es.selector = 0x0;
crosvm_vcpu_set_sregs(vcpu, &sregs);
struct kvm_regs regs;
crosvm_vcpu_get_regs(vcpu, &regs);
regs.rflags = 2;
regs.rip = LOAD_ADDRESS;
regs.rsp = STACK_BASE + STACK_SIZE;
regs.rsi = SUCCESS_ADDRESS;
crosvm_vcpu_set_regs(vcpu, &regs);
write(ctx->irqeventfd, &dummy, sizeof(dummy));
}
if (evt.kind == CROSVM_VCPU_EVENT_KIND_IO_ACCESS &&
evt.io_access.address_space == CROSVM_ADDRESS_SPACE_MMIO &&
evt.io_access.address == KILL_ADDRESS &&
evt.io_access.is_write &&
evt.io_access.length == 1 &&
evt.io_access.data[0] == 1)
{
write(ctx->kill_evt, &dummy, sizeof(dummy));
return NULL;
}
crosvm_vcpu_resume(vcpu);
}
return NULL;
}
int main(int argc, char** argv) {
int i;
uint64_t dummy = 1;
struct crosvm *crosvm;
int ret = crosvm_connect(&crosvm);
if (ret) {
fprintf(stderr, "failed to connect to crosvm: %d\n", ret);
return 1;
}
int kill_evt = crosvm_get_shutdown_eventfd(crosvm);
if (kill_evt < 0) {
fprintf(stderr, "failed to get kill eventfd: %d\n", kill_evt);
return 1;
}
crosvm_reserve_range(crosvm, CROSVM_ADDRESS_SPACE_MMIO, KILL_ADDRESS, 1);
struct crosvm_irq *irq;
ret = crosvm_create_irq_event(crosvm, 0, &irq);
if (ret) {
fprintf(stderr, "failed to create irq event: %d\n", ret);
return 1;
}
int irqeventfd = crosvm_irq_event_get_fd(irq);
int mem_size = 0x4000;
int mem_fd = syscall(SYS_memfd_create, "guest_mem", MFD_CLOEXEC | MFD_ALLOW_SEALING);
if (mem_fd < 0) {
fprintf(stderr, "failed to create guest memfd: %d\n", errno);
return 1;
}
ret = ftruncate(mem_fd, mem_size);
if (ret) {
fprintf(stderr, "failed to set size of guest memory: %d\n", errno);
return 1;
}
uint8_t *mem = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, mem_fd, 0);
if (mem == MAP_FAILED) {
fprintf(stderr, "failed to mmap guest memory: %d\n", errno);
return 1;
}
fcntl(mem_fd, F_ADD_SEALS, F_SEAL_SHRINK);
memcpy(mem + LOAD_ADDRESS, g_code, sizeof(g_code));
struct crosvm_memory *mem_obj;
ret = crosvm_create_memory(crosvm, mem_fd, 0, mem_size, 0, false, false, &mem_obj);
if (ret) {
fprintf(stderr, "failed to create memory in crosvm: %d\n", ret);
return 1;
}
struct crosvm_vcpu *vcpus[32];
struct vcpu_context ctxs[32];
pthread_t vcpu_threads[32];
uint32_t vcpu_count;
for (vcpu_count = 0; vcpu_count < 32; vcpu_count++) {
ret = crosvm_get_vcpu(crosvm, vcpu_count, &vcpus[vcpu_count]);
if (ret == -ENOENT)
break;
if (ret) {
fprintf(stderr, "error while getting all vcpus: %d\n", ret);
return 1;
}
ctxs[vcpu_count].vcpu = vcpus[vcpu_count];
ctxs[vcpu_count].irqeventfd = irqeventfd;
ctxs[vcpu_count].kill_evt = kill_evt;
pthread_create(&vcpu_threads[vcpu_count], NULL, vcpu_thread, &ctxs[vcpu_count]);
}
ret = crosvm_start(crosvm);
if (ret) {
fprintf(stderr, "failed to tell crosvm to start: %d\n", ret);
return 1;
}
ret = read(kill_evt, &dummy, sizeof(dummy));
if (ret == -1) {
fprintf(stderr, "failed to read kill eventfd: %d\n", errno);
return 1;
}
if (mem[SUCCESS_ADDRESS] != 0x01) {
fprintf(stderr, "interrupt was not handled: 0x%x\n", mem[SUCCESS_ADDRESS]);
return 1;
}
return 0;
}