crosvm/cros_async/src/mem.rs
Daniel Verkamp 024a5e44f2 cros_async: add MemRegion iterator
MemRegionIter allows iteration over a &[MemRegion] list, with additional
helper functions to skip bytes and truncate the list.

In particular, this is useful for the virtio DescriptorChain utilities
(Reader/Writer) that previously needed to call collect() to allocate a
new copy of the regions list when it was necessary to limit the length
or skip part of the beginning of the chain.

This also replaces the functionality of MemRegion::truncate(), which
used Cow<[MemRegion]>, meaning it would sometimes need to allocate and
copy. The new MemRegionIter implementation never needs to copy the list
of regions; it just maintains a couple of internal counters and adjusts
the returned MemRegions on the fly.

BUG=None
TEST=tools/dev_container tools/presubmit
TEST=cargo test -p cros_async

Change-Id: Ie66c7a8c4061a166c986c6d6937e21549ddb205e
Reviewed-on: https://chromium-review.googlesource.com/c/crosvm/crosvm/+/4559367
Reviewed-by: Alexandre Courbot <acourbot@chromium.org>
Reviewed-by: Frederick Mayle <fmayle@google.com>
Commit-Queue: Daniel Verkamp <dverkamp@chromium.org>
2023-06-28 19:45:38 +00:00

458 lines
17 KiB
Rust

// Copyright 2020 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use data_model::VolatileSlice;
use remain::sorted;
use thiserror::Error as ThisError;
#[sorted]
#[derive(ThisError, Debug)]
pub enum Error {
/// Invalid offset or length given for an iovec in backing memory.
#[error("Invalid offset/len for getting a slice from {0} with len {1}.")]
InvalidOffset(u64, usize),
}
pub type Result<T> = std::result::Result<T, Error>;
/// Used to index subslices of backing memory. Like an iovec, but relative to the start of the
/// backing memory instead of an absolute pointer.
/// The backing memory referenced by the region can be an array, an mmapped file, or guest memory.
/// The offset is a u64 to allow having file or guest offsets >4GB when run on a 32bit host.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct MemRegion {
pub offset: u64,
pub len: usize,
}
/// Iterator over an ordered list of [`MemRegion`].
///
/// In addition to the usual iterator operations, `MemRegionIter` provides extra functionality that
/// allows subslicing individual memory regions without mutating the underlying list:
/// - [`skip_bytes()`](Self::skip_bytes): Advance the iterator some number of bytes, potentially
/// starting iteration in the middle of a `MemRegion`.
/// - [`take_bytes()`](Self::take_bytes): Truncate the iterator at some number of bytes, potentially
/// ending iteration in the middle of a `MemRegion`.
///
/// The order of subslicing operations matters - limiting length followed by skipping bytes is not
/// the same as skipping bytes followed by limiting length.
#[derive(Clone)]
pub struct MemRegionIter<'a> {
regions: &'a [MemRegion],
skip_bytes: usize,
remaining_bytes: usize,
}
impl<'a> MemRegionIter<'a> {
/// Create a new `MemRegion` iterator over a slice of `MemRegion`.
///
/// By default, the `MemRegionIter` will iterate over each `MemRegion` in the list in its
/// entirety. Call [`skip_bytes()`](Self::skip_bytes) and/or
/// [`take_bytes()`](Self::take_bytes) to limit iteration to a sub-slice of the specified
/// `regions` list.
pub fn new(regions: &'a [MemRegion]) -> Self {
MemRegionIter {
regions,
skip_bytes: 0,
remaining_bytes: usize::MAX,
}
}
/// Advance the iterator by `offset` bytes.
///
/// This may place the iterator in the middle of a [`MemRegion`]; in this case, the offset and
/// length of the next [`MemRegion`] returned by [`next()`](Self::next) will be adjusted to
/// account for the offset.
///
/// Skipping more than the remaining length of an iterator is not an error; if `offset` is
/// greater than or equal to the total number of remaining bytes, future calls to
/// [`next()`](Self::next) will simply return `None`.
pub fn skip_bytes(self, offset: usize) -> Self {
MemRegionIter {
regions: self.regions,
skip_bytes: self.skip_bytes.saturating_add(offset),
remaining_bytes: self.remaining_bytes.saturating_sub(offset),
}
}
/// Truncate the length of the iterator to `max` bytes at most.
///
/// This may cause the final [`MemRegion`] returned by [`next()`](Self::next) to be adjusted so
/// that its length does not cause the total number of bytes to exceed the requested `max`.
///
/// If less than `max` bytes remain in the iterator already, this function will have no effect.
///
/// Only truncation is supported; an iterator cannot be extended, even if it was truncated by a
/// previous call to `take_bytes()`.
pub fn take_bytes(self, max: usize) -> Self {
MemRegionIter {
regions: self.regions,
skip_bytes: self.skip_bytes,
remaining_bytes: self.remaining_bytes.min(max),
}
}
}
impl Iterator for MemRegionIter<'_> {
type Item = MemRegion;
fn next(&mut self) -> Option<Self::Item> {
if self.remaining_bytes == 0 {
return None;
}
while let Some((first, remaining)) = self.regions.split_first() {
// This call to `next()` will consume `first`; future calls will start with `remaining`.
self.regions = remaining;
// If skip_bytes encompasses this entire region, skip to the next region.
// This also skips zero-length regions, which should not be returned by the iterator.
if self.skip_bytes >= first.len {
self.skip_bytes -= first.len;
continue;
}
// Adjust the current region and reset `self.skip_bytes` to 0 to fully consume it.
let mut region = MemRegion {
offset: first.offset + self.skip_bytes as u64,
len: first.len - self.skip_bytes,
};
self.skip_bytes = 0;
// If this region is at least as large as `remaining_bytes`, truncate the region and set
// `regions` to an empty slice to terminate iteration in future calls to `next()`.
if region.len >= self.remaining_bytes {
region.len = self.remaining_bytes;
self.remaining_bytes = 0;
self.regions = &[];
} else {
// Consume and return the full region.
self.remaining_bytes -= region.len;
}
// This should never return a zero-length region (should be handled by the
// `remaining_bytes == 0` early return and zero-length region skipping above).
debug_assert_ne!(region.len, 0);
return Some(region);
}
None
}
}
/// Trait for memory that can yield both iovecs in to the backing memory.
/// # Safety
/// Must be OK to modify the backing memory without owning a mut able reference. For example,
/// this is safe for GuestMemory and VolatileSlices in crosvm as those types guarantee they are
/// dealt with as volatile.
pub unsafe trait BackingMemory {
/// Returns VolatileSlice pointing to the backing memory. This is most commonly unsafe.
/// To implement this safely the implementor must guarantee that the backing memory can be
/// modified out of band without affecting safety guarantees.
fn get_volatile_slice(&self, mem_range: MemRegion) -> Result<VolatileSlice>;
}
/// Wrapper to be used for passing a Vec in as backing memory for asynchronous operations. The
/// wrapper owns a Vec according to the borrow checker. It is loaning this vec out to the kernel(or
/// other modifiers) through the `BackingMemory` trait. This allows multiple modifiers of the array
/// in the `Vec` while this struct is alive. The data in the Vec is loaned to the kernel not the
/// data structure itself, the length, capacity, and pointer to memory cannot be modified.
/// To ensure that those operations can be done safely, no access is allowed to the `Vec`'s memory
/// starting at the time that `VecIoWrapper` is constructed until the time it is turned back in to a
/// `Vec` using `to_inner`. The returned `Vec` is guaranteed to be valid as any combination of bits
/// in a `Vec` of `u8` is valid.
pub struct VecIoWrapper {
inner: Box<[u8]>,
}
impl From<Vec<u8>> for VecIoWrapper {
fn from(vec: Vec<u8>) -> Self {
VecIoWrapper { inner: vec.into() }
}
}
impl From<VecIoWrapper> for Vec<u8> {
fn from(v: VecIoWrapper) -> Vec<u8> {
v.inner.into()
}
}
impl VecIoWrapper {
/// Get the length of the Vec that is wrapped.
#[cfg_attr(windows, allow(dead_code))]
pub fn len(&self) -> usize {
self.inner.len()
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
// Check that the offsets are all valid in the backing vec.
fn check_addrs(&self, mem_range: &MemRegion) -> Result<()> {
let end = mem_range
.offset
.checked_add(mem_range.len as u64)
.ok_or(Error::InvalidOffset(mem_range.offset, mem_range.len))?;
if end > self.inner.len() as u64 {
return Err(Error::InvalidOffset(mem_range.offset, mem_range.len));
}
Ok(())
}
}
// Safe to implement BackingMemory as the vec is only accessible inside the wrapper and these iovecs
// are the only thing allowed to modify it. Nothing else can get a reference to the vec until all
// iovecs are dropped because they borrow Self. Nothing can borrow the owned inner vec until self
// is consumed by `into`, which can't happen if there are outstanding mut borrows.
unsafe impl BackingMemory for VecIoWrapper {
fn get_volatile_slice(&self, mem_range: MemRegion) -> Result<VolatileSlice<'_>> {
self.check_addrs(&mem_range)?;
// Safe because the mem_range range is valid in the backing memory as checked above.
unsafe {
Ok(VolatileSlice::from_raw_parts(
self.inner.as_ptr().add(mem_range.offset as usize) as *mut _,
mem_range.len,
))
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn mem_region_iter_empty() {
let mut iter = MemRegionIter::new(&[]);
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_one() {
let mut iter = MemRegionIter::new(&[MemRegion { offset: 0, len: 4 }]);
assert_eq!(iter.next(), Some(MemRegion { offset: 0, len: 4 }));
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_one_len_usize_max() {
let mut iter = MemRegionIter::new(&[MemRegion {
offset: 0,
len: usize::MAX,
}]);
assert_eq!(
iter.next(),
Some(MemRegion {
offset: 0,
len: usize::MAX
})
);
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_one_len_zero() {
let mut iter = MemRegionIter::new(&[MemRegion { offset: 0, len: 0 }]);
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_one_skip_partial() {
let mut iter = MemRegionIter::new(&[MemRegion { offset: 0, len: 4 }]).skip_bytes(1);
assert_eq!(iter.next(), Some(MemRegion { offset: 1, len: 3 }));
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_one_skip_full() {
let mut iter = MemRegionIter::new(&[MemRegion { offset: 0, len: 4 }]).skip_bytes(4);
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_one_skip_excess() {
let mut iter = MemRegionIter::new(&[MemRegion { offset: 0, len: 4 }]).skip_bytes(5);
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_one_take_zero() {
let mut iter = MemRegionIter::new(&[MemRegion { offset: 0, len: 4 }]).take_bytes(0);
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_one_take_partial() {
let mut iter = MemRegionIter::new(&[MemRegion { offset: 0, len: 4 }]).take_bytes(1);
assert_eq!(iter.next(), Some(MemRegion { offset: 0, len: 1 }));
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_one_take_full() {
let mut iter = MemRegionIter::new(&[MemRegion { offset: 0, len: 4 }]).take_bytes(4);
assert_eq!(iter.next(), Some(MemRegion { offset: 0, len: 4 }));
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_one_take_excess() {
let mut iter = MemRegionIter::new(&[MemRegion { offset: 0, len: 4 }]).take_bytes(5);
assert_eq!(iter.next(), Some(MemRegion { offset: 0, len: 4 }));
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_one_take_skip() {
let mut iter = MemRegionIter::new(&[MemRegion { offset: 0, len: 4 }])
.take_bytes(2)
.skip_bytes(1);
assert_eq!(iter.next(), Some(MemRegion { offset: 1, len: 1 }));
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_one_skip_take() {
let mut iter = MemRegionIter::new(&[MemRegion { offset: 0, len: 4 }])
.skip_bytes(1)
.take_bytes(2);
assert_eq!(iter.next(), Some(MemRegion { offset: 1, len: 2 }));
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_two() {
let mut iter = MemRegionIter::new(&[
MemRegion { offset: 0, len: 4 },
MemRegion { offset: 8, len: 2 },
]);
assert_eq!(iter.next(), Some(MemRegion { offset: 0, len: 4 }));
assert_eq!(iter.next(), Some(MemRegion { offset: 8, len: 2 }));
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_two_skip_partial() {
let mut iter = MemRegionIter::new(&[
MemRegion { offset: 0, len: 4 },
MemRegion { offset: 8, len: 2 },
])
.skip_bytes(1);
assert_eq!(iter.next(), Some(MemRegion { offset: 1, len: 3 }));
assert_eq!(iter.next(), Some(MemRegion { offset: 8, len: 2 }));
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_two_skip_full() {
let mut iter = MemRegionIter::new(&[
MemRegion { offset: 0, len: 4 },
MemRegion { offset: 8, len: 2 },
])
.skip_bytes(4);
assert_eq!(iter.next(), Some(MemRegion { offset: 8, len: 2 }));
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_two_skip_excess() {
let mut iter = MemRegionIter::new(&[
MemRegion { offset: 0, len: 4 },
MemRegion { offset: 8, len: 2 },
])
.skip_bytes(5);
assert_eq!(iter.next(), Some(MemRegion { offset: 9, len: 1 }));
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_two_skip_multi() {
let mut iter = MemRegionIter::new(&[
MemRegion { offset: 0, len: 4 },
MemRegion { offset: 8, len: 2 },
])
.skip_bytes(6);
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_two_take_partial() {
let mut iter = MemRegionIter::new(&[
MemRegion { offset: 0, len: 4 },
MemRegion { offset: 8, len: 2 },
])
.take_bytes(1);
assert_eq!(iter.next(), Some(MemRegion { offset: 0, len: 1 }));
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_two_take_partial2() {
let mut iter = MemRegionIter::new(&[
MemRegion { offset: 0, len: 4 },
MemRegion { offset: 8, len: 2 },
])
.take_bytes(5);
assert_eq!(iter.next(), Some(MemRegion { offset: 0, len: 4 }));
assert_eq!(iter.next(), Some(MemRegion { offset: 8, len: 1 }));
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_two_take_full() {
let mut iter = MemRegionIter::new(&[
MemRegion { offset: 0, len: 4 },
MemRegion { offset: 8, len: 2 },
])
.take_bytes(6);
assert_eq!(iter.next(), Some(MemRegion { offset: 0, len: 4 }));
assert_eq!(iter.next(), Some(MemRegion { offset: 8, len: 2 }));
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_two_take_excess() {
let mut iter = MemRegionIter::new(&[
MemRegion { offset: 0, len: 4 },
MemRegion { offset: 8, len: 2 },
])
.take_bytes(7);
assert_eq!(iter.next(), Some(MemRegion { offset: 0, len: 4 }));
assert_eq!(iter.next(), Some(MemRegion { offset: 8, len: 2 }));
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_embedded_zero_len() {
let mut iter = MemRegionIter::new(&[
MemRegion { offset: 0, len: 4 },
MemRegion { offset: 8, len: 2 },
MemRegion { offset: 9, len: 0 },
MemRegion { offset: 16, len: 5 },
MemRegion { offset: 6, len: 0 },
MemRegion { offset: 24, len: 9 },
])
.skip_bytes(2)
.take_bytes(12);
assert_eq!(iter.next(), Some(MemRegion { offset: 2, len: 2 }));
assert_eq!(iter.next(), Some(MemRegion { offset: 8, len: 2 }));
assert_eq!(iter.next(), Some(MemRegion { offset: 16, len: 5 }));
assert_eq!(iter.next(), Some(MemRegion { offset: 24, len: 3 }));
assert_eq!(iter.next(), None);
}
#[test]
fn mem_region_iter_skip_multi() {
let mut iter = MemRegionIter::new(&[
MemRegion { offset: 0, len: 4 },
MemRegion { offset: 8, len: 2 },
MemRegion { offset: 16, len: 5 },
MemRegion { offset: 24, len: 9 },
])
.skip_bytes(7);
assert_eq!(iter.next(), Some(MemRegion { offset: 17, len: 4 }));
assert_eq!(iter.next(), Some(MemRegion { offset: 24, len: 9 }));
assert_eq!(iter.next(), None);
}
}