crosvm/bit_field/bit_field_derive/bit_field_derive.rs
Dennis Kempin 1dab58a2cf Update all copyright headers to match new style
This search/replace updates all copyright notices to drop the
"All rights reserved", Use "ChromiumOS" instead of "Chromium OS"
and drops the trailing dots.

This fulfills the request from legal and unifies our notices.

./tools/health-check has been updated to only accept this style.

BUG=b:246579983
TEST=./tools/health-check

Change-Id: I87a80701dc651f1baf4820e5cc42469d7c5f5bf7
Reviewed-on: https://chromium-review.googlesource.com/c/crosvm/crosvm/+/3894243
Reviewed-by: Daniel Verkamp <dverkamp@chromium.org>
Commit-Queue: Dennis Kempin <denniskempin@google.com>
2022-09-13 18:41:29 +00:00

806 lines
26 KiB
Rust

// Copyright 2018 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#![recursion_limit = "256"]
extern crate proc_macro;
use proc_macro2::Span;
use proc_macro2::TokenStream;
use quote::quote;
use quote::quote_spanned;
use syn::parse::Error;
use syn::parse::Result;
use syn::parse_macro_input;
use syn::Attribute;
use syn::Data;
use syn::DataEnum;
use syn::DeriveInput;
use syn::Fields;
use syn::FieldsNamed;
use syn::FieldsUnnamed;
use syn::Ident;
use syn::Lit;
use syn::LitInt;
use syn::Meta;
use syn::Type;
use syn::Visibility;
/// The function that derives the actual implementation.
#[proc_macro_attribute]
pub fn bitfield(
_args: proc_macro::TokenStream,
input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
let derive_input = parse_macro_input!(input as DeriveInput);
let expanded = bitfield_impl(&derive_input).unwrap_or_else(|err| {
let compile_error = err.to_compile_error();
quote! {
#compile_error
// Include the original input to avoid "use of undeclared type"
// errors elsewhere.
#derive_input
}
});
expanded.into()
}
fn bitfield_impl(ast: &DeriveInput) -> Result<TokenStream> {
if !ast.generics.params.is_empty() {
return Err(Error::new(
Span::call_site(),
"#[bitfield] does not support generic parameters",
));
}
match &ast.data {
Data::Struct(data_struct) => match &data_struct.fields {
Fields::Named(fields_named) => bitfield_struct_impl(ast, fields_named),
Fields::Unnamed(fields_unnamed) => bitfield_tuple_struct_impl(ast, fields_unnamed),
Fields::Unit => Err(Error::new(
Span::call_site(),
"#[bitfield] does not work with unit struct",
)),
},
Data::Enum(data_enum) => bitfield_enum_impl(ast, data_enum),
Data::Union(_) => Err(Error::new(
Span::call_site(),
"#[bitfield] does not support unions",
)),
}
}
fn bitfield_tuple_struct_impl(ast: &DeriveInput, fields: &FieldsUnnamed) -> Result<TokenStream> {
let mut ast = ast.clone();
let width = match parse_remove_bits_attr(&mut ast)? {
Some(w) => w,
None => {
return Err(Error::new(
Span::call_site(),
"tuple struct field must have bits attribute",
));
}
};
let ident = &ast.ident;
if width > 64 {
return Err(Error::new(
Span::call_site(),
"max width of bitfield field is 64",
));
}
let bits = width as u8;
if fields.unnamed.len() != 1 {
return Err(Error::new(
Span::call_site(),
"tuple struct field must have exactly 1 field",
));
}
let field_type = match &fields.unnamed.first().unwrap().ty {
Type::Path(t) => t,
_ => {
return Err(Error::new(
Span::call_site(),
"tuple struct field must have primitive field",
));
}
};
let span = field_type.path.segments.first().unwrap().ident.span();
let from_u64 = quote_spanned! {
span => val as #field_type
};
let into_u64 = quote_spanned! {
span => val.0 as u64
};
let expanded = quote! {
#ast
impl bit_field::BitFieldSpecifier for #ident {
const FIELD_WIDTH: u8 = #bits;
type SetterType = Self;
type GetterType = Self;
#[inline]
fn from_u64(val: u64) -> Self::GetterType {
Self(#from_u64)
}
#[inline]
fn into_u64(val: Self::SetterType) -> u64 {
#into_u64
}
}
};
Ok(expanded)
}
fn bitfield_enum_impl(ast: &DeriveInput, data: &DataEnum) -> Result<TokenStream> {
let mut ast = ast.clone();
let width = parse_remove_bits_attr(&mut ast)?;
match width {
None => bitfield_enum_without_width_impl(&ast, data),
Some(width) => bitfield_enum_with_width_impl(&ast, data, width),
}
}
fn bitfield_enum_with_width_impl(
ast: &DeriveInput,
data: &DataEnum,
width: u64,
) -> Result<TokenStream> {
if width > 64 {
return Err(Error::new(
Span::call_site(),
"max width of bitfield enum is 64",
));
}
let bits = width as u8;
let declare_discriminants = get_declare_discriminants_for_enum(bits, ast, data);
let ident = &ast.ident;
let type_name = ident.to_string();
let variants = &data.variants;
let match_discriminants = variants.iter().map(|variant| {
let variant = &variant.ident;
quote! {
discriminant::#variant => Ok(#ident::#variant),
}
});
let expanded = quote! {
#ast
impl bit_field::BitFieldSpecifier for #ident {
const FIELD_WIDTH: u8 = #bits;
type SetterType = Self;
type GetterType = std::result::Result<Self, bit_field::Error>;
#[inline]
fn from_u64(val: u64) -> Self::GetterType {
struct discriminant;
impl discriminant {
#(#declare_discriminants)*
}
match val {
#(#match_discriminants)*
v => Err(bit_field::Error::new(#type_name, v)),
}
}
#[inline]
fn into_u64(val: Self::SetterType) -> u64 {
val as u64
}
}
};
Ok(expanded)
}
// Expand to an impl of BitFieldSpecifier for an enum like:
//
// #[bitfield]
// #[derive(Debug, PartialEq)]
// enum TwoBits {
// Zero = 0b00,
// One = 0b01,
// Two = 0b10,
// Three = 0b11,
// }
//
// Such enums may be used as a field of a bitfield struct.
//
// #[bitfield]
// struct Struct {
// prefix: BitField1,
// two_bits: TwoBits,
// suffix: BitField5,
// }
//
fn bitfield_enum_without_width_impl(ast: &DeriveInput, data: &DataEnum) -> Result<TokenStream> {
let ident = &ast.ident;
let variants = &data.variants;
let len = variants.len();
if len.count_ones() != 1 {
return Err(Error::new(
Span::call_site(),
"#[bitfield] expected a number of variants which is a power of 2 when bits is not \
specified for the enum",
));
}
let bits = len.trailing_zeros() as u8;
let declare_discriminants = get_declare_discriminants_for_enum(bits, ast, data);
let match_discriminants = variants.iter().map(|variant| {
let variant = &variant.ident;
quote! {
discriminant::#variant => #ident::#variant,
}
});
let expanded = quote! {
#ast
impl bit_field::BitFieldSpecifier for #ident {
const FIELD_WIDTH: u8 = #bits;
type SetterType = Self;
type GetterType = Self;
#[inline]
fn from_u64(val: u64) -> Self::GetterType {
struct discriminant;
impl discriminant {
#(#declare_discriminants)*
}
match val {
#(#match_discriminants)*
_ => unreachable!(),
}
}
#[inline]
fn into_u64(val: Self::SetterType) -> u64 {
val as u64
}
}
};
Ok(expanded)
}
fn get_declare_discriminants_for_enum(
bits: u8,
ast: &DeriveInput,
data: &DataEnum,
) -> Vec<TokenStream> {
let variants = &data.variants;
let upper_bound = 2u64.pow(bits as u32);
let ident = &ast.ident;
variants
.iter()
.map(|variant| {
let variant = &variant.ident;
let span = variant.span();
let assertion = quote_spanned! {span=>
// If IS_IN_BOUNDS is true, this evaluates to 0.
//
// If IS_IN_BOUNDS is false, this evaluates to `0 - 1` which
// triggers a compile error on underflow when referenced below. The
// error is not beautiful but does carry the span of the problematic
// enum variant so at least it points to the right line.
//
// error: any use of this value will cause an error
// --> bit_field/test.rs:10:5
// |
// 10 | OutOfBounds = 0b111111,
// | ^^^^^^^^^^^ attempt to subtract with overflow
// |
//
// error[E0080]: erroneous constant used
// --> bit_field/test.rs:5:1
// |
// 5 | #[bitfield]
// | ^^^^^^^^^^^ referenced constant has errors
//
const ASSERT: u64 = 0 - !IS_IN_BOUNDS as u64;
};
quote! {
#[allow(non_upper_case_globals)]
const #variant: u64 = {
const IS_IN_BOUNDS: bool = (#ident::#variant as u64) < #upper_bound;
#assertion
#ident::#variant as u64 + ASSERT
};
}
})
.collect()
}
fn bitfield_struct_impl(ast: &DeriveInput, fields: &FieldsNamed) -> Result<TokenStream> {
let name = &ast.ident;
let vis = &ast.vis;
let attrs = &ast.attrs;
let fields = get_struct_fields(fields)?;
let struct_def = get_struct_def(vis, name, &fields);
let bits_impl = get_bits_impl(name);
let fields_impl = get_fields_impl(&fields);
let debug_fmt_impl = get_debug_fmt_impl(name, &fields);
let expanded = quote! {
#(#attrs)*
#struct_def
#bits_impl
impl #name {
#(#fields_impl)*
}
#debug_fmt_impl
};
Ok(expanded)
}
struct FieldSpec<'a> {
ident: &'a Ident,
ty: &'a Type,
expected_bits: Option<LitInt>,
}
// Unwrap ast to get the named fields. We only care about field names and types:
// "myfield : BitField3" -> ("myfield", Token(BitField3))
fn get_struct_fields(fields: &FieldsNamed) -> Result<Vec<FieldSpec>> {
let mut vec = Vec::new();
for field in &fields.named {
let ident = field
.ident
.as_ref()
.expect("Fields::Named has named fields");
let ty = &field.ty;
let expected_bits = parse_bits_attr(&field.attrs)?;
vec.push(FieldSpec {
ident,
ty,
expected_bits,
});
}
Ok(vec)
}
// For example: #[bits = 1]
fn parse_bits_attr(attrs: &[Attribute]) -> Result<Option<LitInt>> {
let mut expected_bits = None;
for attr in attrs {
if attr.path.is_ident("doc") {
continue;
}
if let Some(v) = try_parse_bits_attr(attr)? {
expected_bits = Some(v);
continue;
}
return Err(Error::new_spanned(attr, "unrecognized attribute"));
}
Ok(expected_bits)
}
// This function will return None if the attribute is not #[bits = *].
fn try_parse_bits_attr(attr: &Attribute) -> Result<Option<LitInt>> {
if attr.path.is_ident("bits") {
if let Meta::NameValue(name_value) = attr.parse_meta()? {
if let Lit::Int(int) = name_value.lit {
return Ok(Some(int));
}
}
}
Ok(None)
}
fn parse_remove_bits_attr(ast: &mut DeriveInput) -> Result<Option<u64>> {
let mut width = None;
let mut bits_idx = 0;
for (i, attr) in ast.attrs.iter().enumerate() {
if let Some(w) = try_parse_bits_attr(attr)? {
bits_idx = i;
width = Some(w.base10_parse()?);
}
}
if width.is_some() {
ast.attrs.remove(bits_idx);
}
Ok(width)
}
fn get_struct_def(vis: &Visibility, name: &Ident, fields: &[FieldSpec]) -> TokenStream {
let mut field_types = Vec::new();
for spec in fields {
field_types.push(spec.ty);
}
// `(BitField1::FIELD_WIDTH + BitField3::FIELD_WIDTH + ...)`
let data_size_in_bits = quote! {
(
#(
<#field_types as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize
)+*
)
};
quote! {
#[repr(C)]
#vis struct #name {
data: [u8; #data_size_in_bits / 8],
}
impl #name {
pub fn new() -> #name {
let _: ::bit_field::Check<[u8; #data_size_in_bits % 8]>;
#name {
data: [0; #data_size_in_bits / 8],
}
}
}
}
}
// Implement setter and getter for all fields.
fn get_fields_impl(fields: &[FieldSpec]) -> Vec<TokenStream> {
let mut impls = Vec::new();
// This vec keeps track of types before this field, used to generate the offset.
let current_types = &mut vec![quote!(::bit_field::BitField0)];
for spec in fields {
let ty = spec.ty;
let getter_ident = Ident::new(format!("get_{}", spec.ident).as_str(), Span::call_site());
let setter_ident = Ident::new(format!("set_{}", spec.ident).as_str(), Span::call_site());
// Optional #[bits = N] attribute to provide compile-time checked
// documentation of how many bits some field covers.
let check_expected_bits = spec.expected_bits.as_ref().map(|expected_bits| {
// If expected_bits does not match the actual number of bits in the
// bit field specifier, this will fail to compile with an error
// pointing into the #[bits = N] attribute.
let span = expected_bits.span();
quote_spanned! {span=>
#[allow(dead_code)]
const EXPECTED_BITS: [(); #expected_bits] =
[(); <#ty as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize];
}
});
impls.push(quote! {
pub fn #getter_ident(&self) -> <#ty as ::bit_field::BitFieldSpecifier>::GetterType {
#check_expected_bits
let offset = #(<#current_types as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize)+*;
let val = self.get(offset, <#ty as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH);
<#ty as ::bit_field::BitFieldSpecifier>::from_u64(val)
}
pub fn #setter_ident(&mut self, val: <#ty as ::bit_field::BitFieldSpecifier>::SetterType) {
let val = <#ty as ::bit_field::BitFieldSpecifier>::into_u64(val);
debug_assert!(val <= ::bit_field::max::<#ty>());
let offset = #(<#current_types as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize)+*;
self.set(offset, <#ty as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH, val)
}
});
current_types.push(quote!(#ty));
}
impls
}
// Implement setter and getter for all fields.
fn get_debug_fmt_impl(name: &Ident, fields: &[FieldSpec]) -> TokenStream {
// print fields:
let mut impls = Vec::new();
for spec in fields {
let field_name = spec.ident.to_string();
let getter_ident = Ident::new(&format!("get_{}", spec.ident), Span::call_site());
impls.push(quote! {
.field(#field_name, &self.#getter_ident())
});
}
let name_str = format!("{}", name);
quote! {
impl std::fmt::Debug for #name {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
f.debug_struct(#name_str)
#(#impls)*
.finish()
}
}
}
}
fn get_bits_impl(name: &Ident) -> TokenStream {
quote! {
impl #name {
#[inline]
fn check_access(&self, offset: usize, width: u8) {
debug_assert!(width <= 64);
debug_assert!(offset / 8 < self.data.len());
debug_assert!((offset + (width as usize)) <= (self.data.len() * 8));
}
#[inline]
pub fn get_bit(&self, offset: usize) -> bool {
self.check_access(offset, 1);
let byte_index = offset / 8;
let bit_offset = offset % 8;
let byte = self.data[byte_index];
let mask = 1 << bit_offset;
byte & mask == mask
}
#[inline]
pub fn set_bit(&mut self, offset: usize, val: bool) {
self.check_access(offset, 1);
let byte_index = offset / 8;
let bit_offset = offset % 8;
let byte = &mut self.data[byte_index];
let mask = 1 << bit_offset;
if val {
*byte |= mask;
} else {
*byte &= !mask;
}
}
#[inline]
pub fn get(&self, offset: usize, width: u8) -> u64 {
self.check_access(offset, width);
let mut val = 0;
for i in 0..(width as usize) {
if self.get_bit(i + offset) {
val |= 1 << i;
}
}
val
}
#[inline]
pub fn set(&mut self, offset: usize, width: u8, val: u64) {
self.check_access(offset, width);
for i in 0..(width as usize) {
let mask = 1 << i;
let val_bit_is_set = val & mask == mask;
self.set_bit(i + offset, val_bit_is_set);
}
}
}
}
}
// Only intended to be used from the bit_field crate. This macro emits the
// marker types bit_field::BitField0 through bit_field::BitField64.
#[proc_macro]
#[doc(hidden)]
pub fn define_bit_field_specifiers(_input: proc_macro::TokenStream) -> proc_macro::TokenStream {
let mut code = TokenStream::new();
for width in 0u8..=64 {
let span = Span::call_site();
let long_name = Ident::new(&format!("BitField{}", width), span);
let short_name = Ident::new(&format!("B{}", width), span);
let default_field_type = if width <= 8 {
quote!(u8)
} else if width <= 16 {
quote!(u16)
} else if width <= 32 {
quote!(u32)
} else {
quote!(u64)
};
code.extend(quote! {
pub struct #long_name;
pub use self::#long_name as #short_name;
impl BitFieldSpecifier for #long_name {
const FIELD_WIDTH: u8 = #width;
type SetterType = #default_field_type;
type GetterType = #default_field_type;
#[inline]
fn from_u64(val: u64) -> Self::GetterType {
val as Self::GetterType
}
#[inline]
fn into_u64(val: Self::SetterType) -> u64 {
val as u64
}
}
});
}
code.into()
}
#[cfg(test)]
mod tests {
use syn::parse_quote;
use super::*;
#[test]
fn end_to_end() {
let input: DeriveInput = parse_quote! {
#[derive(Clone)]
struct MyBitField {
a: BitField1,
b: BitField2,
c: BitField5,
}
};
let expected = quote! {
#[derive(Clone)]
#[repr(C)]
struct MyBitField {
data: [u8; (<BitField1 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize
+ <BitField2 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize
+ <BitField5 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize)
/ 8],
}
impl MyBitField {
pub fn new() -> MyBitField {
let _: ::bit_field::Check<[
u8;
(<BitField1 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize
+ <BitField2 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize
+ <BitField5 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize)
% 8
]>;
MyBitField {
data: [0; (<BitField1 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize
+ <BitField2 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize
+ <BitField5 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize)
/ 8],
}
}
}
impl MyBitField {
#[inline]
fn check_access(&self, offset: usize, width: u8) {
debug_assert!(width <= 64);
debug_assert!(offset / 8 < self.data.len());
debug_assert!((offset + (width as usize)) <= (self.data.len() * 8));
}
#[inline]
pub fn get_bit(&self, offset: usize) -> bool {
self.check_access(offset, 1);
let byte_index = offset / 8;
let bit_offset = offset % 8;
let byte = self.data[byte_index];
let mask = 1 << bit_offset;
byte & mask == mask
}
#[inline]
pub fn set_bit(&mut self, offset: usize, val: bool) {
self.check_access(offset, 1);
let byte_index = offset / 8;
let bit_offset = offset % 8;
let byte = &mut self.data[byte_index];
let mask = 1 << bit_offset;
if val {
*byte |= mask;
} else {
*byte &= !mask;
}
}
#[inline]
pub fn get(&self, offset: usize, width: u8) -> u64 {
self.check_access(offset, width);
let mut val = 0;
for i in 0..(width as usize) {
if self.get_bit(i + offset) {
val |= 1 << i;
}
}
val
}
#[inline]
pub fn set(&mut self, offset: usize, width: u8, val: u64) {
self.check_access(offset, width);
for i in 0..(width as usize) {
let mask = 1 << i;
let val_bit_is_set = val & mask == mask;
self.set_bit(i + offset, val_bit_is_set);
}
}
}
impl MyBitField {
pub fn get_a(&self) -> <BitField1 as ::bit_field::BitFieldSpecifier>::GetterType {
let offset = <::bit_field::BitField0 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize;
let val = self.get(offset, <BitField1 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH);
<BitField1 as ::bit_field::BitFieldSpecifier>::from_u64(val)
}
pub fn set_a(&mut self, val: <BitField1 as ::bit_field::BitFieldSpecifier>::SetterType) {
let val = <BitField1 as ::bit_field::BitFieldSpecifier>::into_u64(val);
debug_assert!(val <= ::bit_field::max::<BitField1>());
let offset = <::bit_field::BitField0 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize;
self.set(offset, <BitField1 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH, val)
}
pub fn get_b(&self) -> <BitField2 as ::bit_field::BitFieldSpecifier>::GetterType {
let offset = <::bit_field::BitField0 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize
+ <BitField1 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize;
let val = self.get(offset, <BitField2 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH);
<BitField2 as ::bit_field::BitFieldSpecifier>::from_u64(val)
}
pub fn set_b(&mut self, val: <BitField2 as ::bit_field::BitFieldSpecifier>::SetterType) {
let val = <BitField2 as ::bit_field::BitFieldSpecifier>::into_u64(val);
debug_assert!(val <= ::bit_field::max::<BitField2>());
let offset = <::bit_field::BitField0 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize
+ <BitField1 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize;
self.set(offset, <BitField2 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH, val)
}
pub fn get_c(&self) -> <BitField5 as ::bit_field::BitFieldSpecifier>::GetterType {
let offset = <::bit_field::BitField0 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize
+ <BitField1 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize
+ <BitField2 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize;
let val = self.get(offset, <BitField5 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH);
<BitField5 as ::bit_field::BitFieldSpecifier>::from_u64(val)
}
pub fn set_c(&mut self, val: <BitField5 as ::bit_field::BitFieldSpecifier>::SetterType) {
let val = <BitField5 as ::bit_field::BitFieldSpecifier>::into_u64(val);
debug_assert!(val <= ::bit_field::max::<BitField5>());
let offset = <::bit_field::BitField0 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize
+ <BitField1 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize
+ <BitField2 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH as usize;
self.set(offset, <BitField5 as ::bit_field::BitFieldSpecifier>::FIELD_WIDTH, val)
}
}
impl std::fmt::Debug for MyBitField {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
f.debug_struct("MyBitField")
.field("a", &self.get_a())
.field("b", &self.get_b())
.field("c", &self.get_c())
.finish()
}
}
};
assert_eq!(
bitfield_impl(&input).unwrap().to_string(),
expected.to_string()
);
}
}