jj/lib/tests/test_rewrite.rs

1398 lines
51 KiB
Rust
Raw Normal View History

// Copyright 2021 The Jujutsu Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use jujutsu_lib::commit_builder::CommitBuilder;
use jujutsu_lib::op_store::{RefTarget, WorkspaceId};
use jujutsu_lib::repo_path::RepoPath;
use jujutsu_lib::rewrite::DescendantRebaser;
use maplit::{hashmap, hashset};
use test_case::test_case;
use testutils::{assert_rebased, create_random_commit, CommitGraphBuilder, TestRepo};
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_sideways(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
// Commit B was replaced by commit F. Commits C-E should be rebased.
//
// F
// | D
// | C E
// | |/
// | B
// |/
// A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
let commit_c = graph_builder.commit_with_parents(&[&commit_b]);
let commit_d = graph_builder.commit_with_parents(&[&commit_c]);
let commit_e = graph_builder.commit_with_parents(&[&commit_b]);
let commit_f = graph_builder.commit_with_parents(&[&commit_a]);
let mut rebaser = DescendantRebaser::new(
&settings,
tx.mut_repo(),
hashmap! {
commit_b.id().clone() => hashset!{commit_f.id().clone()}
},
hashset! {},
);
let new_commit_c = assert_rebased(rebaser.rebase_next().unwrap(), &commit_c, &[&commit_f]);
let new_commit_d = assert_rebased(rebaser.rebase_next().unwrap(), &commit_d, &[&new_commit_c]);
let new_commit_e = assert_rebased(rebaser.rebase_next().unwrap(), &commit_e, &[&commit_f]);
assert!(rebaser.rebase_next().unwrap().is_none());
assert_eq!(rebaser.rebased().len(), 3);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {
new_commit_d.id().clone(),
new_commit_e.id().clone()
}
);
}
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_forward(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
// Commit B was replaced by commit F. Commits C and E should be rebased onto F.
// Commit D does not get rebased because it's an ancestor of the
// destination. Commit G does not get replaced because it's already in
// place.
rewrite: fix auto-rebasing after "branchy" rewrites The `DescendantRebaser` was designed to help with rebasing in two different use cases: 1) after regular rewriting of commits where the change ID is preserved, and 2) after importing moved branches from other repo (e.g. backing Git repo or remote). Many of the tests are for the second use case, such as where a branch was moved forward. However, I just noticed that there's a pretty common scenario from the first use case that is not supported. Let's say you have this history: ``` D | C C' |/ B B' |/ A ``` Here we want C' to be rebased onto B' and then D to be rebased onto C''. However, because of the support for moving branches forward, we would not rebase commits that were already rewritten, such as C' here (see affected tests for details), which resulted in D getting rebased onto C', and both B and B' remaining visible. I think I was thinking when I designed it that it would be nice if you could just tell `DescendantRebaser` that any descendants of a commit should be moved forward. That may be useful, but I don't think we'll want that for the general case of a branch moving forward. Perhaps we'll want to make it configurable which branches it should happen for. Either way, the way it was coded by not rebasing already rewritten commits did not work for the case above. We may be able to handle both cases better by considering each rewrite separately instead of all destinations at once. For now, however, I've decided to keep it simple, so I'm fixing the case above by sacrificing some of the potentially useful functionality for moving branches forward. Another fix necessary for the scenario shown above was to make sure we always rebase C' before D. Before this patch, that depended on the order in the index. This patch fixes that by modifying the topological order to take rewrites into account, making D depend not only on C but also on C'. (I suppose you could instead say that C depends on both B and C'; I don't know if that'd make a difference.)
2022-01-22 05:50:25 +00:00
// TODO: The above is not what actually happens! The test below shows what
// actually happens: D and F also get rebased onto F, so we end up with
// duplicates. Consider if it's worth supporting the case above better or if
// that decision belongs with the caller (as we currently force it to do by
// not supporting it in DescendantRebaser).
//
// G
// F E
// |/
// D C
// |/
// B
// A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
let commit_c = graph_builder.commit_with_parents(&[&commit_b]);
let commit_d = graph_builder.commit_with_parents(&[&commit_b]);
let commit_e = graph_builder.commit_with_parents(&[&commit_d]);
let commit_f = graph_builder.commit_with_parents(&[&commit_d]);
let commit_g = graph_builder.commit_with_parents(&[&commit_f]);
let mut rebaser = DescendantRebaser::new(
&settings,
tx.mut_repo(),
hashmap! {
commit_b.id().clone() => hashset!{commit_f.id().clone()}
},
hashset! {},
);
let new_commit_d = assert_rebased(rebaser.rebase_next().unwrap(), &commit_d, &[&commit_f]);
let new_commit_f = assert_rebased(rebaser.rebase_next().unwrap(), &commit_f, &[&new_commit_d]);
let new_commit_c = assert_rebased(rebaser.rebase_next().unwrap(), &commit_c, &[&new_commit_f]);
let new_commit_e = assert_rebased(rebaser.rebase_next().unwrap(), &commit_e, &[&new_commit_d]);
let new_commit_g = assert_rebased(rebaser.rebase_next().unwrap(), &commit_g, &[&new_commit_f]);
assert!(rebaser.rebase_next().unwrap().is_none());
rewrite: fix auto-rebasing after "branchy" rewrites The `DescendantRebaser` was designed to help with rebasing in two different use cases: 1) after regular rewriting of commits where the change ID is preserved, and 2) after importing moved branches from other repo (e.g. backing Git repo or remote). Many of the tests are for the second use case, such as where a branch was moved forward. However, I just noticed that there's a pretty common scenario from the first use case that is not supported. Let's say you have this history: ``` D | C C' |/ B B' |/ A ``` Here we want C' to be rebased onto B' and then D to be rebased onto C''. However, because of the support for moving branches forward, we would not rebase commits that were already rewritten, such as C' here (see affected tests for details), which resulted in D getting rebased onto C', and both B and B' remaining visible. I think I was thinking when I designed it that it would be nice if you could just tell `DescendantRebaser` that any descendants of a commit should be moved forward. That may be useful, but I don't think we'll want that for the general case of a branch moving forward. Perhaps we'll want to make it configurable which branches it should happen for. Either way, the way it was coded by not rebasing already rewritten commits did not work for the case above. We may be able to handle both cases better by considering each rewrite separately instead of all destinations at once. For now, however, I've decided to keep it simple, so I'm fixing the case above by sacrificing some of the potentially useful functionality for moving branches forward. Another fix necessary for the scenario shown above was to make sure we always rebase C' before D. Before this patch, that depended on the order in the index. This patch fixes that by modifying the topological order to take rewrites into account, making D depend not only on C but also on C'. (I suppose you could instead say that C depends on both B and C'; I don't know if that'd make a difference.)
2022-01-22 05:50:25 +00:00
assert_eq!(rebaser.rebased().len(), 5);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {
new_commit_c.id().clone(),
rewrite: fix auto-rebasing after "branchy" rewrites The `DescendantRebaser` was designed to help with rebasing in two different use cases: 1) after regular rewriting of commits where the change ID is preserved, and 2) after importing moved branches from other repo (e.g. backing Git repo or remote). Many of the tests are for the second use case, such as where a branch was moved forward. However, I just noticed that there's a pretty common scenario from the first use case that is not supported. Let's say you have this history: ``` D | C C' |/ B B' |/ A ``` Here we want C' to be rebased onto B' and then D to be rebased onto C''. However, because of the support for moving branches forward, we would not rebase commits that were already rewritten, such as C' here (see affected tests for details), which resulted in D getting rebased onto C', and both B and B' remaining visible. I think I was thinking when I designed it that it would be nice if you could just tell `DescendantRebaser` that any descendants of a commit should be moved forward. That may be useful, but I don't think we'll want that for the general case of a branch moving forward. Perhaps we'll want to make it configurable which branches it should happen for. Either way, the way it was coded by not rebasing already rewritten commits did not work for the case above. We may be able to handle both cases better by considering each rewrite separately instead of all destinations at once. For now, however, I've decided to keep it simple, so I'm fixing the case above by sacrificing some of the potentially useful functionality for moving branches forward. Another fix necessary for the scenario shown above was to make sure we always rebase C' before D. Before this patch, that depended on the order in the index. This patch fixes that by modifying the topological order to take rewrites into account, making D depend not only on C but also on C'. (I suppose you could instead say that C depends on both B and C'; I don't know if that'd make a difference.)
2022-01-22 05:50:25 +00:00
new_commit_e.id().clone(),
new_commit_g.id().clone(),
}
);
}
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_reorder(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
rewrite: fix auto-rebasing after "branchy" rewrites The `DescendantRebaser` was designed to help with rebasing in two different use cases: 1) after regular rewriting of commits where the change ID is preserved, and 2) after importing moved branches from other repo (e.g. backing Git repo or remote). Many of the tests are for the second use case, such as where a branch was moved forward. However, I just noticed that there's a pretty common scenario from the first use case that is not supported. Let's say you have this history: ``` D | C C' |/ B B' |/ A ``` Here we want C' to be rebased onto B' and then D to be rebased onto C''. However, because of the support for moving branches forward, we would not rebase commits that were already rewritten, such as C' here (see affected tests for details), which resulted in D getting rebased onto C', and both B and B' remaining visible. I think I was thinking when I designed it that it would be nice if you could just tell `DescendantRebaser` that any descendants of a commit should be moved forward. That may be useful, but I don't think we'll want that for the general case of a branch moving forward. Perhaps we'll want to make it configurable which branches it should happen for. Either way, the way it was coded by not rebasing already rewritten commits did not work for the case above. We may be able to handle both cases better by considering each rewrite separately instead of all destinations at once. For now, however, I've decided to keep it simple, so I'm fixing the case above by sacrificing some of the potentially useful functionality for moving branches forward. Another fix necessary for the scenario shown above was to make sure we always rebase C' before D. Before this patch, that depended on the order in the index. This patch fixes that by modifying the topological order to take rewrites into account, making D depend not only on C but also on C'. (I suppose you could instead say that C depends on both B and C'; I don't know if that'd make a difference.)
2022-01-22 05:50:25 +00:00
// Commit E was replaced by commit D, and commit C was replaced by commit F
// (attempting to to reorder C and E), and commit G was replaced by commit
// H.
//
// I
// G H
// E F
// C D
// |/
// B
// A
let mut tx = repo.start_transaction(&settings, "test");
rewrite: fix auto-rebasing after "branchy" rewrites The `DescendantRebaser` was designed to help with rebasing in two different use cases: 1) after regular rewriting of commits where the change ID is preserved, and 2) after importing moved branches from other repo (e.g. backing Git repo or remote). Many of the tests are for the second use case, such as where a branch was moved forward. However, I just noticed that there's a pretty common scenario from the first use case that is not supported. Let's say you have this history: ``` D | C C' |/ B B' |/ A ``` Here we want C' to be rebased onto B' and then D to be rebased onto C''. However, because of the support for moving branches forward, we would not rebase commits that were already rewritten, such as C' here (see affected tests for details), which resulted in D getting rebased onto C', and both B and B' remaining visible. I think I was thinking when I designed it that it would be nice if you could just tell `DescendantRebaser` that any descendants of a commit should be moved forward. That may be useful, but I don't think we'll want that for the general case of a branch moving forward. Perhaps we'll want to make it configurable which branches it should happen for. Either way, the way it was coded by not rebasing already rewritten commits did not work for the case above. We may be able to handle both cases better by considering each rewrite separately instead of all destinations at once. For now, however, I've decided to keep it simple, so I'm fixing the case above by sacrificing some of the potentially useful functionality for moving branches forward. Another fix necessary for the scenario shown above was to make sure we always rebase C' before D. Before this patch, that depended on the order in the index. This patch fixes that by modifying the topological order to take rewrites into account, making D depend not only on C but also on C'. (I suppose you could instead say that C depends on both B and C'; I don't know if that'd make a difference.)
2022-01-22 05:50:25 +00:00
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
let commit_c = graph_builder.commit_with_parents(&[&commit_b]);
let commit_d = graph_builder.commit_with_parents(&[&commit_b]);
let commit_e = graph_builder.commit_with_parents(&[&commit_c]);
let commit_f = graph_builder.commit_with_parents(&[&commit_d]);
let commit_g = graph_builder.commit_with_parents(&[&commit_e]);
let commit_h = graph_builder.commit_with_parents(&[&commit_f]);
let commit_i = graph_builder.commit_with_parents(&[&commit_g]);
let mut rebaser = DescendantRebaser::new(
&settings,
tx.mut_repo(),
hashmap! {
commit_e.id().clone() => hashset!{commit_d.id().clone()},
commit_c.id().clone() => hashset!{commit_f.id().clone()},
commit_g.id().clone() => hashset!{commit_h.id().clone()},
},
hashset! {},
);
let new_commit_i = assert_rebased(rebaser.rebase_next().unwrap(), &commit_i, &[&commit_h]);
assert!(rebaser.rebase_next().unwrap().is_none());
rewrite: fix auto-rebasing after "branchy" rewrites The `DescendantRebaser` was designed to help with rebasing in two different use cases: 1) after regular rewriting of commits where the change ID is preserved, and 2) after importing moved branches from other repo (e.g. backing Git repo or remote). Many of the tests are for the second use case, such as where a branch was moved forward. However, I just noticed that there's a pretty common scenario from the first use case that is not supported. Let's say you have this history: ``` D | C C' |/ B B' |/ A ``` Here we want C' to be rebased onto B' and then D to be rebased onto C''. However, because of the support for moving branches forward, we would not rebase commits that were already rewritten, such as C' here (see affected tests for details), which resulted in D getting rebased onto C', and both B and B' remaining visible. I think I was thinking when I designed it that it would be nice if you could just tell `DescendantRebaser` that any descendants of a commit should be moved forward. That may be useful, but I don't think we'll want that for the general case of a branch moving forward. Perhaps we'll want to make it configurable which branches it should happen for. Either way, the way it was coded by not rebasing already rewritten commits did not work for the case above. We may be able to handle both cases better by considering each rewrite separately instead of all destinations at once. For now, however, I've decided to keep it simple, so I'm fixing the case above by sacrificing some of the potentially useful functionality for moving branches forward. Another fix necessary for the scenario shown above was to make sure we always rebase C' before D. Before this patch, that depended on the order in the index. This patch fixes that by modifying the topological order to take rewrites into account, making D depend not only on C but also on C'. (I suppose you could instead say that C depends on both B and C'; I don't know if that'd make a difference.)
2022-01-22 05:50:25 +00:00
assert_eq!(rebaser.rebased().len(), 1);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {
new_commit_i.id().clone(),
}
);
}
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_backward(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
// Commit C was replaced by commit B. Commit D should be rebased.
//
// D
// C
// B
// A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
let commit_c = graph_builder.commit_with_parents(&[&commit_b]);
let commit_d = graph_builder.commit_with_parents(&[&commit_c]);
let mut rebaser = DescendantRebaser::new(
&settings,
tx.mut_repo(),
hashmap! {
commit_c.id().clone() => hashset!{commit_b.id().clone()}
},
hashset! {},
);
let new_commit_d = assert_rebased(rebaser.rebase_next().unwrap(), &commit_d, &[&commit_b]);
assert!(rebaser.rebase_next().unwrap().is_none());
assert_eq!(rebaser.rebased().len(), 1);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {new_commit_d.id().clone()}
);
}
rewrite: fix auto-rebasing after "branchy" rewrites The `DescendantRebaser` was designed to help with rebasing in two different use cases: 1) after regular rewriting of commits where the change ID is preserved, and 2) after importing moved branches from other repo (e.g. backing Git repo or remote). Many of the tests are for the second use case, such as where a branch was moved forward. However, I just noticed that there's a pretty common scenario from the first use case that is not supported. Let's say you have this history: ``` D | C C' |/ B B' |/ A ``` Here we want C' to be rebased onto B' and then D to be rebased onto C''. However, because of the support for moving branches forward, we would not rebase commits that were already rewritten, such as C' here (see affected tests for details), which resulted in D getting rebased onto C', and both B and B' remaining visible. I think I was thinking when I designed it that it would be nice if you could just tell `DescendantRebaser` that any descendants of a commit should be moved forward. That may be useful, but I don't think we'll want that for the general case of a branch moving forward. Perhaps we'll want to make it configurable which branches it should happen for. Either way, the way it was coded by not rebasing already rewritten commits did not work for the case above. We may be able to handle both cases better by considering each rewrite separately instead of all destinations at once. For now, however, I've decided to keep it simple, so I'm fixing the case above by sacrificing some of the potentially useful functionality for moving branches forward. Another fix necessary for the scenario shown above was to make sure we always rebase C' before D. Before this patch, that depended on the order in the index. This patch fixes that by modifying the topological order to take rewrites into account, making D depend not only on C but also on C'. (I suppose you could instead say that C depends on both B and C'; I don't know if that'd make a difference.)
2022-01-22 05:50:25 +00:00
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_chain_becomes_branchy(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
rewrite: fix auto-rebasing after "branchy" rewrites The `DescendantRebaser` was designed to help with rebasing in two different use cases: 1) after regular rewriting of commits where the change ID is preserved, and 2) after importing moved branches from other repo (e.g. backing Git repo or remote). Many of the tests are for the second use case, such as where a branch was moved forward. However, I just noticed that there's a pretty common scenario from the first use case that is not supported. Let's say you have this history: ``` D | C C' |/ B B' |/ A ``` Here we want C' to be rebased onto B' and then D to be rebased onto C''. However, because of the support for moving branches forward, we would not rebase commits that were already rewritten, such as C' here (see affected tests for details), which resulted in D getting rebased onto C', and both B and B' remaining visible. I think I was thinking when I designed it that it would be nice if you could just tell `DescendantRebaser` that any descendants of a commit should be moved forward. That may be useful, but I don't think we'll want that for the general case of a branch moving forward. Perhaps we'll want to make it configurable which branches it should happen for. Either way, the way it was coded by not rebasing already rewritten commits did not work for the case above. We may be able to handle both cases better by considering each rewrite separately instead of all destinations at once. For now, however, I've decided to keep it simple, so I'm fixing the case above by sacrificing some of the potentially useful functionality for moving branches forward. Another fix necessary for the scenario shown above was to make sure we always rebase C' before D. Before this patch, that depended on the order in the index. This patch fixes that by modifying the topological order to take rewrites into account, making D depend not only on C but also on C'. (I suppose you could instead say that C depends on both B and C'; I don't know if that'd make a difference.)
2022-01-22 05:50:25 +00:00
// Commit B was replaced by commit E and commit C was replaced by commit F.
// Commit F should get rebased onto E, and commit D should get rebased onto
// the rebased F.
//
// D
// C F
// |/
// B E
// |/
// A
let mut tx = repo.start_transaction(&settings, "test");
rewrite: fix auto-rebasing after "branchy" rewrites The `DescendantRebaser` was designed to help with rebasing in two different use cases: 1) after regular rewriting of commits where the change ID is preserved, and 2) after importing moved branches from other repo (e.g. backing Git repo or remote). Many of the tests are for the second use case, such as where a branch was moved forward. However, I just noticed that there's a pretty common scenario from the first use case that is not supported. Let's say you have this history: ``` D | C C' |/ B B' |/ A ``` Here we want C' to be rebased onto B' and then D to be rebased onto C''. However, because of the support for moving branches forward, we would not rebase commits that were already rewritten, such as C' here (see affected tests for details), which resulted in D getting rebased onto C', and both B and B' remaining visible. I think I was thinking when I designed it that it would be nice if you could just tell `DescendantRebaser` that any descendants of a commit should be moved forward. That may be useful, but I don't think we'll want that for the general case of a branch moving forward. Perhaps we'll want to make it configurable which branches it should happen for. Either way, the way it was coded by not rebasing already rewritten commits did not work for the case above. We may be able to handle both cases better by considering each rewrite separately instead of all destinations at once. For now, however, I've decided to keep it simple, so I'm fixing the case above by sacrificing some of the potentially useful functionality for moving branches forward. Another fix necessary for the scenario shown above was to make sure we always rebase C' before D. Before this patch, that depended on the order in the index. This patch fixes that by modifying the topological order to take rewrites into account, making D depend not only on C but also on C'. (I suppose you could instead say that C depends on both B and C'; I don't know if that'd make a difference.)
2022-01-22 05:50:25 +00:00
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
let commit_c = graph_builder.commit_with_parents(&[&commit_b]);
let commit_d = graph_builder.commit_with_parents(&[&commit_c]);
let commit_e = graph_builder.commit_with_parents(&[&commit_a]);
let commit_f = graph_builder.commit_with_parents(&[&commit_b]);
let mut rebaser = DescendantRebaser::new(
&settings,
tx.mut_repo(),
hashmap! {
commit_b.id().clone() => hashset!{commit_e.id().clone()},
commit_c.id().clone() => hashset!{commit_f.id().clone()},
},
hashset! {},
);
let new_commit_f = assert_rebased(rebaser.rebase_next().unwrap(), &commit_f, &[&commit_e]);
let new_commit_d = assert_rebased(rebaser.rebase_next().unwrap(), &commit_d, &[&new_commit_f]);
assert!(rebaser.rebase_next().unwrap().is_none());
rewrite: fix auto-rebasing after "branchy" rewrites The `DescendantRebaser` was designed to help with rebasing in two different use cases: 1) after regular rewriting of commits where the change ID is preserved, and 2) after importing moved branches from other repo (e.g. backing Git repo or remote). Many of the tests are for the second use case, such as where a branch was moved forward. However, I just noticed that there's a pretty common scenario from the first use case that is not supported. Let's say you have this history: ``` D | C C' |/ B B' |/ A ``` Here we want C' to be rebased onto B' and then D to be rebased onto C''. However, because of the support for moving branches forward, we would not rebase commits that were already rewritten, such as C' here (see affected tests for details), which resulted in D getting rebased onto C', and both B and B' remaining visible. I think I was thinking when I designed it that it would be nice if you could just tell `DescendantRebaser` that any descendants of a commit should be moved forward. That may be useful, but I don't think we'll want that for the general case of a branch moving forward. Perhaps we'll want to make it configurable which branches it should happen for. Either way, the way it was coded by not rebasing already rewritten commits did not work for the case above. We may be able to handle both cases better by considering each rewrite separately instead of all destinations at once. For now, however, I've decided to keep it simple, so I'm fixing the case above by sacrificing some of the potentially useful functionality for moving branches forward. Another fix necessary for the scenario shown above was to make sure we always rebase C' before D. Before this patch, that depended on the order in the index. This patch fixes that by modifying the topological order to take rewrites into account, making D depend not only on C but also on C'. (I suppose you could instead say that C depends on both B and C'; I don't know if that'd make a difference.)
2022-01-22 05:50:25 +00:00
assert_eq!(rebaser.rebased().len(), 2);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {
new_commit_d.id().clone(),
}
);
}
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_internal_merge(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
// Commit B was replaced by commit F. Commits C-E should be rebased.
//
// F
// | E
// | |\
// | C D
// | |/
// | B
// |/
// A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
let commit_c = graph_builder.commit_with_parents(&[&commit_b]);
let commit_d = graph_builder.commit_with_parents(&[&commit_b]);
let commit_e = graph_builder.commit_with_parents(&[&commit_c, &commit_d]);
let commit_f = graph_builder.commit_with_parents(&[&commit_a]);
let mut rebaser = DescendantRebaser::new(
&settings,
tx.mut_repo(),
hashmap! {
commit_b.id().clone() => hashset!{commit_f.id().clone()}
},
hashset! {},
);
let new_commit_c = assert_rebased(rebaser.rebase_next().unwrap(), &commit_c, &[&commit_f]);
let new_commit_d = assert_rebased(rebaser.rebase_next().unwrap(), &commit_d, &[&commit_f]);
let new_commit_e = assert_rebased(
rebaser.rebase_next().unwrap(),
&commit_e,
&[&new_commit_c, &new_commit_d],
);
assert!(rebaser.rebase_next().unwrap().is_none());
assert_eq!(rebaser.rebased().len(), 3);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! { new_commit_e.id().clone() }
);
}
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_external_merge(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
// Commit C was replaced by commit F. Commits E should be rebased. The rebased
// commit E should have F as first parent and commit D as second parent.
//
// F
// | E
// | |\
// | C D
// | |/
// | B
// |/
// A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
let commit_c = graph_builder.commit_with_parents(&[&commit_b]);
let commit_d = graph_builder.commit_with_parents(&[&commit_b]);
let commit_e = graph_builder.commit_with_parents(&[&commit_c, &commit_d]);
let commit_f = graph_builder.commit_with_parents(&[&commit_a]);
let mut rebaser = DescendantRebaser::new(
&settings,
tx.mut_repo(),
hashmap! {
commit_c.id().clone() => hashset!{commit_f.id().clone()}
},
hashset! {},
);
let new_commit_e = assert_rebased(
rebaser.rebase_next().unwrap(),
&commit_e,
&[&commit_f, &commit_d],
);
assert!(rebaser.rebase_next().unwrap().is_none());
assert_eq!(rebaser.rebased().len(), 1);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {new_commit_e.id().clone()}
);
}
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_abandon(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
// Commit B and commit E were abandoned. Commit C and commit D should get
// rebased onto commit A. Commit F should get rebased onto the new commit D.
//
// F
// E
// D C
// |/
// B
// A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
let commit_c = graph_builder.commit_with_parents(&[&commit_b]);
let commit_d = graph_builder.commit_with_parents(&[&commit_b]);
let commit_e = graph_builder.commit_with_parents(&[&commit_d]);
let commit_f = graph_builder.commit_with_parents(&[&commit_e]);
let mut rebaser = DescendantRebaser::new(
&settings,
tx.mut_repo(),
hashmap! {},
hashset! {commit_b.id().clone(), commit_e.id().clone()},
);
let new_commit_c = assert_rebased(rebaser.rebase_next().unwrap(), &commit_c, &[&commit_a]);
let new_commit_d = assert_rebased(rebaser.rebase_next().unwrap(), &commit_d, &[&commit_a]);
let new_commit_f = assert_rebased(rebaser.rebase_next().unwrap(), &commit_f, &[&new_commit_d]);
assert!(rebaser.rebase_next().unwrap().is_none());
assert_eq!(rebaser.rebased().len(), 3);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {
new_commit_c.id().clone(),
new_commit_f.id().clone()
}
);
}
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_abandon_no_descendants(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
// Commit B and C were abandoned. Commit A should become a head.
//
// C
// B
// A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
let commit_c = graph_builder.commit_with_parents(&[&commit_b]);
let mut rebaser = DescendantRebaser::new(
&settings,
tx.mut_repo(),
hashmap! {},
hashset! {commit_b.id().clone(), commit_c.id().clone()},
);
assert!(rebaser.rebase_next().unwrap().is_none());
assert_eq!(rebaser.rebased().len(), 0);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {
commit_a.id().clone(),
}
);
}
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_abandon_and_replace(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
// Commit B was replaced by commit E. Commit C was abandoned. Commit D should
// get rebased onto commit E.
//
// D
// C
// E B
// |/
// A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
let commit_c = graph_builder.commit_with_parents(&[&commit_b]);
let commit_d = graph_builder.commit_with_parents(&[&commit_c]);
let commit_e = graph_builder.commit_with_parents(&[&commit_a]);
let mut rebaser = DescendantRebaser::new(
&settings,
tx.mut_repo(),
hashmap! {commit_b.id().clone() => hashset!{commit_e.id().clone()}},
hashset! {commit_c.id().clone()},
);
let new_commit_d = assert_rebased(rebaser.rebase_next().unwrap(), &commit_d, &[&commit_e]);
assert!(rebaser.rebase_next().unwrap().is_none());
assert_eq!(rebaser.rebased().len(), 1);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! { new_commit_d.id().clone()}
);
}
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_abandon_degenerate_merge(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
// Commit B was abandoned. Commit D should get rebased to have only C as parent
// (not A and C).
//
// D
// |\
// B C
// |/
// A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
let commit_c = graph_builder.commit_with_parents(&[&commit_a]);
let commit_d = graph_builder.commit_with_parents(&[&commit_b, &commit_c]);
let mut rebaser = DescendantRebaser::new(
&settings,
tx.mut_repo(),
hashmap! {},
hashset! {commit_b.id().clone()},
);
let new_commit_d = assert_rebased(rebaser.rebase_next().unwrap(), &commit_d, &[&commit_c]);
assert!(rebaser.rebase_next().unwrap().is_none());
assert_eq!(rebaser.rebased().len(), 1);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {new_commit_d.id().clone()}
);
}
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_abandon_widen_merge(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
// Commit E was abandoned. Commit F should get rebased to have B, C, and D as
// parents (in that order).
//
// F
// |\
// E \
// |\ \
// B C D
// \|/
// A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
let commit_c = graph_builder.commit_with_parents(&[&commit_a]);
let commit_d = graph_builder.commit_with_parents(&[&commit_a]);
let commit_e = graph_builder.commit_with_parents(&[&commit_b, &commit_c]);
let commit_f = graph_builder.commit_with_parents(&[&commit_e, &commit_d]);
let mut rebaser = DescendantRebaser::new(
&settings,
tx.mut_repo(),
hashmap! {},
hashset! {commit_e.id().clone()},
);
let new_commit_f = assert_rebased(
rebaser.rebase_next().unwrap(),
&commit_f,
&[&commit_b, &commit_c, &commit_d],
);
assert!(rebaser.rebase_next().unwrap().is_none());
assert_eq!(rebaser.rebased().len(), 1);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! { new_commit_f.id().clone()}
);
}
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_multiple_sideways(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
// Commit B and commit D were both replaced by commit F. Commit C and commit E
// should get rebased onto it.
//
// C E
// B D F
// | |/
// |/
// A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
let commit_c = graph_builder.commit_with_parents(&[&commit_b]);
let commit_d = graph_builder.commit_with_parents(&[&commit_a]);
let commit_e = graph_builder.commit_with_parents(&[&commit_d]);
let commit_f = graph_builder.commit_with_parents(&[&commit_a]);
let mut rebaser = DescendantRebaser::new(
&settings,
tx.mut_repo(),
hashmap! {
commit_b.id().clone() => hashset!{commit_f.id().clone()},
commit_d.id().clone() => hashset!{commit_f.id().clone()},
},
hashset! {},
);
let new_commit_c = assert_rebased(rebaser.rebase_next().unwrap(), &commit_c, &[&commit_f]);
let new_commit_e = assert_rebased(rebaser.rebase_next().unwrap(), &commit_e, &[&commit_f]);
assert!(rebaser.rebase_next().unwrap().is_none());
assert_eq!(rebaser.rebased().len(), 2);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {
new_commit_c.id().clone(),
new_commit_e.id().clone()
}
);
}
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_multiple_swap(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
// Commit B was replaced by commit D. Commit D was replaced by commit B.
// Commit C and commit E should swap places.
//
// C E
// B D
// |/
// A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
let commit_c = graph_builder.commit_with_parents(&[&commit_b]);
let commit_d = graph_builder.commit_with_parents(&[&commit_a]);
let commit_e = graph_builder.commit_with_parents(&[&commit_d]);
let mut rebaser = DescendantRebaser::new(
&settings,
tx.mut_repo(),
hashmap! {
commit_b.id().clone() => hashset!{commit_d.id().clone()},
commit_d.id().clone() => hashset!{commit_b.id().clone()},
},
hashset! {},
);
let new_commit_c = assert_rebased(rebaser.rebase_next().unwrap(), &commit_c, &[&commit_d]);
let new_commit_e = assert_rebased(rebaser.rebase_next().unwrap(), &commit_e, &[&commit_b]);
assert!(rebaser.rebase_next().unwrap().is_none());
assert_eq!(rebaser.rebased().len(), 2);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {
new_commit_c.id().clone(),
new_commit_e.id().clone()
}
);
}
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_multiple_no_descendants(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
// Commit B was replaced by commit C. Commit C was replaced by commit B.
//
// B C
// |/
// A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
let commit_c = graph_builder.commit_with_parents(&[&commit_a]);
let mut rebaser = DescendantRebaser::new(
&settings,
tx.mut_repo(),
hashmap! {
commit_b.id().clone() => hashset!{commit_c.id().clone()},
commit_c.id().clone() => hashset!{commit_b.id().clone()},
},
hashset! {},
);
assert!(rebaser.rebase_next().unwrap().is_none());
assert!(rebaser.rebased().is_empty());
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {
commit_b.id().clone(),
commit_c.id().clone()
}
);
}
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_divergent_rewrite(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
// Commit B was replaced by commit B2. Commit D was replaced by commits D2 and
// D3. Commit F was replaced by commit F2. Commit C should be rebased onto
// B2. Commit E should not be rebased. Commit G should be rebased onto
// commit F2.
//
// G
// F
// E
// D
// C
// B
// | F2
// |/
// | D3
// |/
// | D2
// |/
// | B2
// |/
// A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
let commit_c = graph_builder.commit_with_parents(&[&commit_b]);
let commit_d = graph_builder.commit_with_parents(&[&commit_c]);
let commit_e = graph_builder.commit_with_parents(&[&commit_d]);
let commit_f = graph_builder.commit_with_parents(&[&commit_e]);
let commit_g = graph_builder.commit_with_parents(&[&commit_f]);
let commit_b2 = graph_builder.commit_with_parents(&[&commit_a]);
let commit_d2 = graph_builder.commit_with_parents(&[&commit_a]);
let commit_d3 = graph_builder.commit_with_parents(&[&commit_a]);
let commit_f2 = graph_builder.commit_with_parents(&[&commit_a]);
let mut rebaser = DescendantRebaser::new(
&settings,
tx.mut_repo(),
hashmap! {
commit_b.id().clone() => hashset!{commit_b2.id().clone()},
commit_d.id().clone() => hashset!{commit_d2.id().clone(), commit_d3.id().clone()},
commit_f.id().clone() => hashset!{commit_f2.id().clone()},
},
hashset! {},
);
let new_commit_c = assert_rebased(rebaser.rebase_next().unwrap(), &commit_c, &[&commit_b2]);
let new_commit_g = assert_rebased(rebaser.rebase_next().unwrap(), &commit_g, &[&commit_f2]);
assert!(rebaser.rebase_next().unwrap().is_none());
assert_eq!(rebaser.rebased().len(), 2);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {
new_commit_c.id().clone(),
commit_d2.id().clone(),
commit_d3.id().clone(),
commit_e.id().clone(),
new_commit_g.id().clone(),
}
);
}
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_repeated(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
// Commit B was replaced by commit B2. Commit C should get rebased. Rebasing
// descendants again should have no effect (C should not get rebased again).
// We then replace B2 by B3. C should now get rebased onto B3.
//
// C
// B
// | B3
// |/
// | B2
// |/
// A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
let commit_c = graph_builder.commit_with_parents(&[&commit_b]);
let commit_b2 = CommitBuilder::for_rewrite_from(&settings, &commit_b)
.set_description("b2".to_string())
.write_to_repo(tx.mut_repo());
let mut rebaser = tx.mut_repo().create_descendant_rebaser(&settings);
let commit_c2 = assert_rebased(rebaser.rebase_next().unwrap(), &commit_c, &[&commit_b2]);
assert!(rebaser.rebase_next().unwrap().is_none());
assert_eq!(rebaser.rebased().len(), 1);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {
commit_c2.id().clone(),
}
);
// We made no more changes, so nothing should be rebased.
let mut rebaser = tx.mut_repo().create_descendant_rebaser(&settings);
assert!(rebaser.rebase_next().unwrap().is_none());
assert_eq!(rebaser.rebased().len(), 0);
// Now mark B3 as rewritten from B2 and rebase descendants again.
let commit_b3 = CommitBuilder::for_rewrite_from(&settings, &commit_b2)
.set_description("b3".to_string())
.write_to_repo(tx.mut_repo());
let mut rebaser = tx.mut_repo().create_descendant_rebaser(&settings);
let commit_c3 = assert_rebased(rebaser.rebase_next().unwrap(), &commit_c2, &[&commit_b3]);
assert!(rebaser.rebase_next().unwrap().is_none());
assert_eq!(rebaser.rebased().len(), 1);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {
// commit_b.id().clone(),
commit_c3.id().clone(),
}
);
}
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_contents(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
// Commit B was replaced by commit D. Commit C should have the changes from
// commit C and commit D, but not the changes from commit B.
//
// D
// | C
// | B
// |/
// A
let mut tx = repo.start_transaction(&settings, "test");
let path1 = RepoPath::from_internal_string("file1");
let tree1 = testutils::create_tree(repo, &[(&path1, "content")]);
let commit_a = CommitBuilder::for_new_commit(
&settings,
vec![repo.store().root_commit_id().clone()],
tree1.id().clone(),
)
.write_to_repo(tx.mut_repo());
let path2 = RepoPath::from_internal_string("file2");
let tree2 = testutils::create_tree(repo, &[(&path2, "content")]);
let commit_b =
CommitBuilder::for_new_commit(&settings, vec![commit_a.id().clone()], tree2.id().clone())
.write_to_repo(tx.mut_repo());
let path3 = RepoPath::from_internal_string("file3");
let tree3 = testutils::create_tree(repo, &[(&path3, "content")]);
let commit_c =
CommitBuilder::for_new_commit(&settings, vec![commit_b.id().clone()], tree3.id().clone())
.write_to_repo(tx.mut_repo());
let path4 = RepoPath::from_internal_string("file4");
let tree4 = testutils::create_tree(repo, &[(&path4, "content")]);
let commit_d =
CommitBuilder::for_new_commit(&settings, vec![commit_a.id().clone()], tree4.id().clone())
.write_to_repo(tx.mut_repo());
let mut rebaser = DescendantRebaser::new(
&settings,
tx.mut_repo(),
hashmap! {
commit_b.id().clone() => hashset!{commit_d.id().clone()}
},
hashset! {},
);
rebaser.rebase_all().unwrap();
let rebased = rebaser.rebased();
assert_eq!(rebased.len(), 1);
let new_commit_c = repo
.store()
.get_commit(rebased.get(commit_c.id()).unwrap())
.unwrap();
assert_eq!(
new_commit_c.tree().path_value(&path3),
commit_c.tree().path_value(&path3)
);
assert_eq!(
new_commit_c.tree().path_value(&path4),
commit_d.tree().path_value(&path4)
);
assert_ne!(
new_commit_c.tree().path_value(&path2),
commit_b.tree().path_value(&path2)
);
}
#[test]
fn test_rebase_descendants_basic_branch_update() {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(false);
let repo = &test_repo.repo;
// Branch "main" points to commit B. B gets rewritten as B2. Branch main should
// be updated to point to B2.
//
// B main B2 main
// | => |
// A A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
tx.mut_repo()
.set_local_branch("main".to_string(), RefTarget::Normal(commit_b.id().clone()));
let repo = tx.commit();
let mut tx = repo.start_transaction(&settings, "test");
let commit_b2 =
CommitBuilder::for_rewrite_from(&settings, &commit_b).write_to_repo(tx.mut_repo());
tx.mut_repo().rebase_descendants(&settings).unwrap();
assert_eq!(
tx.mut_repo().get_local_branch("main"),
Some(RefTarget::Normal(commit_b2.id().clone()))
);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {commit_b2.id().clone()}
);
}
#[test]
fn test_rebase_descendants_branch_move_two_steps() {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(false);
let repo = &test_repo.repo;
// Branch "main" points to branch C. C gets rewritten as C2 and B gets rewritten
// as B2. C2 should be rebased onto B2, creating C3, and main should be
// updated to point to C3.
//
// C2 C main C3 main
// | / |
// |/ => |
// B B2 B2
// |/ |
// A A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
let commit_c = graph_builder.commit_with_parents(&[&commit_b]);
tx.mut_repo()
.set_local_branch("main".to_string(), RefTarget::Normal(commit_c.id().clone()));
let repo = tx.commit();
let mut tx = repo.start_transaction(&settings, "test");
let commit_b2 =
CommitBuilder::for_rewrite_from(&settings, &commit_b).write_to_repo(tx.mut_repo());
let commit_c2 =
CommitBuilder::for_rewrite_from(&settings, &commit_c).write_to_repo(tx.mut_repo());
tx.mut_repo().rebase_descendants(&settings).unwrap();
let heads = tx.mut_repo().view().heads();
assert_eq!(heads.len(), 1);
let c3_id = heads.iter().next().unwrap().clone();
let commit_c3 = repo.store().get_commit(&c3_id).unwrap();
assert_ne!(commit_c3.id(), commit_c2.id());
assert_eq!(commit_c3.parent_ids(), vec![commit_b2.id().clone()]);
assert_eq!(
tx.mut_repo().get_local_branch("main"),
Some(RefTarget::Normal(commit_c3.id().clone()))
);
}
#[test]
fn test_rebase_descendants_basic_branch_update_with_non_local_branch() {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(false);
let repo = &test_repo.repo;
// Branch "main" points to commit B. B gets rewritten as B2. Branch main should
// be updated to point to B2. Remote branch main@origin and tag v1 should not
// get updated.
//
// B2 main
// B main main@origin v1 | B main@origin v1
// | => |/
// A A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
tx.mut_repo()
.set_local_branch("main".to_string(), RefTarget::Normal(commit_b.id().clone()));
tx.mut_repo().set_remote_branch(
"main".to_string(),
"origin".to_string(),
RefTarget::Normal(commit_b.id().clone()),
);
tx.mut_repo()
.set_tag("v1".to_string(), RefTarget::Normal(commit_b.id().clone()));
let repo = tx.commit();
let mut tx = repo.start_transaction(&settings, "test");
let commit_b2 =
CommitBuilder::for_rewrite_from(&settings, &commit_b).write_to_repo(tx.mut_repo());
tx.mut_repo().rebase_descendants(&settings).unwrap();
assert_eq!(
tx.mut_repo().get_local_branch("main"),
Some(RefTarget::Normal(commit_b2.id().clone()))
);
// The remote branch and tag should not get updated
assert_eq!(
tx.mut_repo().get_remote_branch("main", "origin"),
Some(RefTarget::Normal(commit_b.id().clone()))
);
assert_eq!(
tx.mut_repo().get_tag("v1"),
Some(RefTarget::Normal(commit_b.id().clone()))
);
// Commit B is no longer visible even though the remote branch points to it.
// (The user can still see it using e.g. the `remote_branches()` revset.)
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {commit_b2.id().clone()}
);
}
#[test]
fn test_rebase_descendants_update_branch_after_abandon() {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(false);
let repo = &test_repo.repo;
// Branch "main" points to commit B. B is then abandoned. Branch main should
// be updated to point to A.
//
// B main
// | => A main
// A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
tx.mut_repo()
.set_local_branch("main".to_string(), RefTarget::Normal(commit_b.id().clone()));
let repo = tx.commit();
let mut tx = repo.start_transaction(&settings, "test");
tx.mut_repo().record_abandoned_commit(commit_b.id().clone());
tx.mut_repo().rebase_descendants(&settings).unwrap();
assert_eq!(
tx.mut_repo().get_local_branch("main"),
Some(RefTarget::Normal(commit_a.id().clone()))
);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {commit_a.id().clone()}
);
}
#[test]
fn test_rebase_descendants_update_branches_after_divergent_rewrite() {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(false);
let repo = &test_repo.repo;
// Branch "main" points to commit B. B gets rewritten as B2, B3, B4. Branch main
// should become a conflict pointing to all of them.
//
// B4 main?
// | B3 main?
// B main |/B2 main?
// | => |/
// A A
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
tx.mut_repo()
.set_local_branch("main".to_string(), RefTarget::Normal(commit_b.id().clone()));
let repo = tx.commit();
let mut tx = repo.start_transaction(&settings, "test");
let commit_b2 =
CommitBuilder::for_rewrite_from(&settings, &commit_b).write_to_repo(tx.mut_repo());
// Different description so they're not the same commit
let commit_b3 = CommitBuilder::for_rewrite_from(&settings, &commit_b)
.set_description("different".to_string())
.write_to_repo(tx.mut_repo());
// Different description so they're not the same commit
let commit_b4 = CommitBuilder::for_rewrite_from(&settings, &commit_b)
.set_description("more different".to_string())
.write_to_repo(tx.mut_repo());
tx.mut_repo().rebase_descendants(&settings).unwrap();
assert_eq!(
tx.mut_repo().get_local_branch("main"),
Some(RefTarget::Conflict {
removes: vec![commit_b.id().clone(), commit_b.id().clone()],
adds: vec![
commit_b2.id().clone(),
commit_b3.id().clone(),
commit_b4.id().clone()
]
})
);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {
commit_b2.id().clone(),
commit_b3.id().clone(),
commit_b4.id().clone(),
}
);
}
#[test]
fn test_rebase_descendants_rewrite_updates_branch_conflict() {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(false);
let repo = &test_repo.repo;
// Branch "main" is a conflict removing commit A and adding commits B and C.
// A gets rewritten as A2 and A3. B gets rewritten as B2 and B2. The branch
// should become a conflict removing A and B, and adding B2, B3, C.
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.initial_commit();
let commit_c = graph_builder.initial_commit();
tx.mut_repo().set_local_branch(
"main".to_string(),
RefTarget::Conflict {
removes: vec![commit_a.id().clone()],
adds: vec![commit_b.id().clone(), commit_c.id().clone()],
},
);
let repo = tx.commit();
let mut tx = repo.start_transaction(&settings, "test");
let commit_a2 =
CommitBuilder::for_rewrite_from(&settings, &commit_a).write_to_repo(tx.mut_repo());
// Different description so they're not the same commit
let commit_a3 = CommitBuilder::for_rewrite_from(&settings, &commit_a)
.set_description("different".to_string())
.write_to_repo(tx.mut_repo());
let commit_b2 =
CommitBuilder::for_rewrite_from(&settings, &commit_b).write_to_repo(tx.mut_repo());
// Different description so they're not the same commit
let commit_b3 = CommitBuilder::for_rewrite_from(&settings, &commit_b)
.set_description("different".to_string())
.write_to_repo(tx.mut_repo());
tx.mut_repo().rebase_descendants(&settings).unwrap();
assert_eq!(
tx.mut_repo().get_local_branch("main"),
Some(RefTarget::Conflict {
removes: vec![commit_a.id().clone(), commit_b.id().clone()],
adds: vec![
commit_c.id().clone(),
commit_b2.id().clone(),
commit_b3.id().clone(),
]
})
);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! {
commit_a2.id().clone(),
commit_a3.id().clone(),
commit_b2.id().clone(),
commit_b3.id().clone(),
commit_c.id().clone(),
}
);
}
#[test]
fn test_rebase_descendants_rewrite_resolves_branch_conflict() {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(false);
let repo = &test_repo.repo;
// Branch "main" is a conflict removing ancestor commit A and adding commit B
// and C (maybe it moved forward to B locally and moved forward to C
// remotely). Now B gets rewritten as B2, which is a descendant of C (maybe
// B was automatically rebased on top of the updated remote). That
// would result in a conflict removing A and adding B2 and C. However, since C
// is a descendant of A, and B2 is a descendant of C, the conflict gets
// resolved to B2.
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
let commit_c = graph_builder.commit_with_parents(&[&commit_a]);
tx.mut_repo().set_local_branch(
"main".to_string(),
RefTarget::Conflict {
removes: vec![commit_a.id().clone()],
adds: vec![commit_b.id().clone(), commit_c.id().clone()],
},
);
let repo = tx.commit();
let mut tx = repo.start_transaction(&settings, "test");
let commit_b2 = CommitBuilder::for_rewrite_from(&settings, &commit_b)
.set_parents(vec![commit_c.id().clone()])
.write_to_repo(tx.mut_repo());
tx.mut_repo().rebase_descendants(&settings).unwrap();
assert_eq!(
tx.mut_repo().get_local_branch("main"),
Some(RefTarget::Normal(commit_b2.id().clone()))
);
assert_eq!(
*tx.mut_repo().view().heads(),
hashset! { commit_b2.id().clone()}
);
}
#[test]
fn test_rebase_descendants_branch_delete_modify_abandon() {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(false);
let repo = &test_repo.repo;
// Branch "main" initially points to commit A. One operation rewrites it to
// point to B (child of A). A concurrent operation deletes the branch. That
// leaves the branch pointing to "-A+B". We now abandon B. That should
// result in the branch pointing to "-A+A=0", so the branch should
// be deleted.
let mut tx = repo.start_transaction(&settings, "test");
let mut graph_builder = CommitGraphBuilder::new(&settings, tx.mut_repo());
let commit_a = graph_builder.initial_commit();
let commit_b = graph_builder.commit_with_parents(&[&commit_a]);
tx.mut_repo().set_local_branch(
"main".to_string(),
RefTarget::Conflict {
removes: vec![commit_a.id().clone()],
adds: vec![commit_b.id().clone()],
},
);
let repo = tx.commit();
let mut tx = repo.start_transaction(&settings, "test");
tx.mut_repo().record_abandoned_commit(commit_b.id().clone());
tx.mut_repo().rebase_descendants(&settings).unwrap();
assert_eq!(tx.mut_repo().get_local_branch("main"), None);
}
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_update_checkout(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
// Checked-out commit B was replaced by commit C. C should become
// checked out.
//
// C B
// |/
// A
let mut tx = repo.start_transaction(&settings, "test");
let commit_a = create_random_commit(&settings, repo).write_to_repo(tx.mut_repo());
let commit_b = create_random_commit(&settings, repo)
.set_parents(vec![commit_a.id().clone()])
.write_to_repo(tx.mut_repo());
let ws1_id = WorkspaceId::new("ws1".to_string());
let ws2_id = WorkspaceId::new("ws2".to_string());
let ws3_id = WorkspaceId::new("ws3".to_string());
tx.mut_repo()
.set_wc_commit(ws1_id.clone(), commit_b.id().clone())
.unwrap();
tx.mut_repo()
.set_wc_commit(ws2_id.clone(), commit_b.id().clone())
.unwrap();
tx.mut_repo()
.set_wc_commit(ws3_id.clone(), commit_a.id().clone())
.unwrap();
let repo = tx.commit();
let mut tx = repo.start_transaction(&settings, "test");
let commit_c = CommitBuilder::for_rewrite_from(&settings, &commit_b)
.set_description("C".to_string())
.write_to_repo(tx.mut_repo());
tx.mut_repo().rebase_descendants(&settings).unwrap();
let repo = tx.commit();
// Workspaces 1 and 2 had B checked out, so they get updated to C. Workspace 3
// had A checked out, so it doesn't get updated.
assert_eq!(repo.view().get_wc_commit_id(&ws1_id), Some(commit_c.id()));
assert_eq!(repo.view().get_wc_commit_id(&ws2_id), Some(commit_c.id()));
assert_eq!(repo.view().get_wc_commit_id(&ws3_id), Some(commit_a.id()));
}
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_update_checkout_abandoned(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
// Checked-out commit B was abandoned. A child of A
// should become checked out.
//
// B
// |
// A
let mut tx = repo.start_transaction(&settings, "test");
let commit_a = create_random_commit(&settings, repo).write_to_repo(tx.mut_repo());
let commit_b = create_random_commit(&settings, repo)
.set_parents(vec![commit_a.id().clone()])
.write_to_repo(tx.mut_repo());
let ws1_id = WorkspaceId::new("ws1".to_string());
let ws2_id = WorkspaceId::new("ws2".to_string());
let ws3_id = WorkspaceId::new("ws3".to_string());
tx.mut_repo()
.set_wc_commit(ws1_id.clone(), commit_b.id().clone())
.unwrap();
tx.mut_repo()
.set_wc_commit(ws2_id.clone(), commit_b.id().clone())
.unwrap();
tx.mut_repo()
.set_wc_commit(ws3_id.clone(), commit_a.id().clone())
.unwrap();
let repo = tx.commit();
let mut tx = repo.start_transaction(&settings, "test");
tx.mut_repo().record_abandoned_commit(commit_b.id().clone());
tx.mut_repo().rebase_descendants(&settings).unwrap();
let repo = tx.commit();
// Workspaces 1 and 2 had B checked out, so they get updated to the same new
// commit on top of C. Workspace 3 had A checked out, so it doesn't get updated.
assert_eq!(
repo.view().get_wc_commit_id(&ws1_id),
repo.view().get_wc_commit_id(&ws2_id)
);
let checkout = repo
.store()
.get_commit(repo.view().get_wc_commit_id(&ws1_id).unwrap())
.unwrap();
assert_eq!(checkout.parent_ids(), vec![commit_a.id().clone()]);
assert_eq!(repo.view().get_wc_commit_id(&ws3_id), Some(commit_a.id()));
}
#[test_case(false ; "local backend")]
#[test_case(true ; "git backend")]
fn test_rebase_descendants_update_checkout_abandoned_merge(use_git: bool) {
let settings = testutils::user_settings();
let test_repo = TestRepo::init(use_git);
let repo = &test_repo.repo;
// Checked-out merge commit D was abandoned. A parent commit should become
// checked out.
//
// D
// |\
// B C
// |/
// A
let mut tx = repo.start_transaction(&settings, "test");
let commit_a = create_random_commit(&settings, repo).write_to_repo(tx.mut_repo());
let commit_b = create_random_commit(&settings, repo)
.set_parents(vec![commit_a.id().clone()])
.write_to_repo(tx.mut_repo());
let commit_c = create_random_commit(&settings, repo)
.set_parents(vec![commit_a.id().clone()])
.write_to_repo(tx.mut_repo());
let commit_d = create_random_commit(&settings, repo)
.set_parents(vec![commit_b.id().clone(), commit_c.id().clone()])
.write_to_repo(tx.mut_repo());
let workspace_id = WorkspaceId::default();
tx.mut_repo()
.set_wc_commit(workspace_id.clone(), commit_d.id().clone())
.unwrap();
let repo = tx.commit();
let mut tx = repo.start_transaction(&settings, "test");
tx.mut_repo().record_abandoned_commit(commit_d.id().clone());
tx.mut_repo().rebase_descendants(&settings).unwrap();
let repo = tx.commit();
let new_checkout_id = repo.view().get_wc_commit_id(&workspace_id).unwrap();
let checkout = repo.store().get_commit(new_checkout_id).unwrap();
assert_eq!(checkout.parent_ids(), vec![commit_b.id().clone()]);
}