// Copyright 2020-2023 The Jujutsu Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! Utility for operation id resolution and traversal. use std::cmp::Ordering; use std::collections::{HashMap, HashSet}; use std::slice; use std::sync::Arc; use itertools::Itertools as _; use thiserror::Error; use crate::object_id::{HexPrefix, PrefixResolution}; use crate::op_heads_store::{OpHeadResolutionError, OpHeadsStore}; use crate::op_store::{OpStore, OpStoreError, OpStoreResult, OperationId}; use crate::operation::Operation; use crate::repo::{ReadonlyRepo, Repo as _, RepoLoader}; use crate::{dag_walk, op_heads_store}; /// Error that may occur during evaluation of operation set expression. #[derive(Debug, Error)] pub enum OpsetEvaluationError { /// Failed to resolve operation set expression. #[error(transparent)] OpsetResolution(#[from] OpsetResolutionError), /// Failed to resolve the current operation heads. #[error(transparent)] OpHeadResolution(#[from] OpHeadResolutionError), /// Failed to access operation object. #[error(transparent)] OpStore(#[from] OpStoreError), } /// Error that may occur during parsing and resolution of operation set /// expression. #[derive(Debug, Error)] pub enum OpsetResolutionError { // TODO: Maybe empty/multiple operations should be allowed, and rejected by // caller as needed. /// Expression resolved to multiple operations. #[error(r#"The "{0}" expression resolved to more than one operation"#)] MultipleOperations(String), /// Expression resolved to no operations. #[error(r#"The "{0}" expression resolved to no operations"#)] EmptyOperations(String), /// Invalid symbol as an operation ID. #[error(r#"Operation ID "{0}" is not a valid hexadecimal prefix"#)] InvalidIdPrefix(String), /// Operation ID not found. #[error(r#"No operation ID matching "{0}""#)] NoSuchOperation(String), /// Operation ID prefix matches multiple operations. #[error(r#"Operation ID prefix "{0}" is ambiguous"#)] AmbiguousIdPrefix(String), } /// Resolves operation set expression without loading a repo. pub fn resolve_op_for_load( repo_loader: &RepoLoader, op_str: &str, ) -> Result { let op_store = repo_loader.op_store(); let op_heads_store = repo_loader.op_heads_store().as_ref(); let get_current_op = || { op_heads_store::resolve_op_heads(op_heads_store, op_store, |_| { Err(OpsetResolutionError::MultipleOperations("@".to_owned()).into()) }) }; let get_head_ops = || get_current_head_ops(op_store, op_heads_store); resolve_single_op(op_store, get_current_op, get_head_ops, op_str) } /// Resolves operation set expression against the loaded repo. /// /// The "@" symbol will be resolved to the operation the repo was loaded at. pub fn resolve_op_with_repo( repo: &ReadonlyRepo, op_str: &str, ) -> Result { resolve_op_at(repo.op_store(), repo.operation(), op_str) } /// Resolves operation set expression at the given head operation. pub fn resolve_op_at( op_store: &Arc, head_op: &Operation, op_str: &str, ) -> Result { let get_current_op = || Ok(head_op.clone()); let get_head_ops = || Ok(vec![head_op.clone()]); resolve_single_op(op_store, get_current_op, get_head_ops, op_str) } /// Resolves operation set expression with the given "@" symbol resolution /// callbacks. fn resolve_single_op( op_store: &Arc, get_current_op: impl FnOnce() -> Result, get_head_ops: impl FnOnce() -> OpStoreResult>, op_str: &str, ) -> Result { let op_symbol = op_str.trim_end_matches(['-', '+']); let op_postfix = &op_str[op_symbol.len()..]; let head_ops = op_postfix.contains('+').then(get_head_ops).transpose()?; let mut operation = match op_symbol { "@" => get_current_op(), s => resolve_single_op_from_store(op_store, s), }?; for c in op_postfix.chars() { let mut neighbor_ops = match c { '-' => operation.parents().try_collect()?, '+' => find_child_ops(head_ops.as_ref().unwrap(), operation.id())?, _ => unreachable!(), }; operation = match neighbor_ops.len() { 0 => Err(OpsetResolutionError::EmptyOperations(op_str.to_owned()))?, 1 => neighbor_ops.pop().unwrap(), _ => Err(OpsetResolutionError::MultipleOperations(op_str.to_owned()))?, }; } Ok(operation) } fn resolve_single_op_from_store( op_store: &Arc, op_str: &str, ) -> Result { if op_str.is_empty() { return Err(OpsetResolutionError::InvalidIdPrefix(op_str.to_owned()).into()); } let prefix = HexPrefix::new(op_str) .ok_or_else(|| OpsetResolutionError::InvalidIdPrefix(op_str.to_owned()))?; match op_store.resolve_operation_id_prefix(&prefix)? { PrefixResolution::NoMatch => { Err(OpsetResolutionError::NoSuchOperation(op_str.to_owned()).into()) } PrefixResolution::SingleMatch(op_id) => { let data = op_store.read_operation(&op_id)?; Ok(Operation::new(op_store.clone(), op_id, data)) } PrefixResolution::AmbiguousMatch => { Err(OpsetResolutionError::AmbiguousIdPrefix(op_str.to_owned()).into()) } } } /// Loads the current head operations. The returned operations may contain /// redundant ones which are ancestors of the other heads. pub fn get_current_head_ops( op_store: &Arc, op_heads_store: &dyn OpHeadsStore, ) -> OpStoreResult> { op_heads_store .get_op_heads() .into_iter() .map(|id| -> OpStoreResult { let data = op_store.read_operation(&id)?; Ok(Operation::new(op_store.clone(), id, data)) }) .try_collect() } /// Looks up children of the `root_op_id` by traversing from the `head_ops`. /// /// This will be slow if the `root_op_id` is far away (or unreachable) from the /// `head_ops`. fn find_child_ops( head_ops: &[Operation], root_op_id: &OperationId, ) -> OpStoreResult> { walk_ancestors(head_ops) .take_while(|res| res.as_ref().map_or(true, |op| op.id() != root_op_id)) .filter_ok(|op| op.parent_ids().iter().any(|id| id == root_op_id)) .try_collect() } #[derive(Clone, Debug, Eq, Hash, PartialEq)] struct OperationByEndTime(Operation); impl Ord for OperationByEndTime { fn cmp(&self, other: &Self) -> Ordering { let self_end_time = &self.0.metadata().end_time; let other_end_time = &other.0.metadata().end_time; self_end_time .cmp(other_end_time) .then_with(|| self.0.cmp(&other.0)) // to comply with Eq } } impl PartialOrd for OperationByEndTime { fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } /// Walks `head_ops` and their ancestors in reverse topological order. pub fn walk_ancestors(head_ops: &[Operation]) -> impl Iterator> { // Emit the latest head first to stabilize the order. let mut head_ops = head_ops .iter() .cloned() .map(OperationByEndTime) .collect_vec(); head_ops.sort_unstable_by(|op1, op2| op1.cmp(op2).reverse()); // Lazily load operations based on timestamp-based heuristic. This works so long // as the operation history is mostly linear. dag_walk::topo_order_reverse_lazy_ok( head_ops.into_iter().map(Ok), |OperationByEndTime(op)| op.id().clone(), |OperationByEndTime(op)| op.parents().map_ok(OperationByEndTime).collect_vec(), ) .map_ok(|OperationByEndTime(op)| op) } /// Stats about `reparent_range()`. #[derive(Clone, Debug, Eq, PartialEq)] pub struct ReparentStats { /// New head operation ids. pub new_head_ids: Vec, /// The number of rewritten operations. pub rewritten_count: usize, /// The number of ancestor operations that become unreachable from the /// rewritten heads. pub unreachable_count: usize, } /// Reparents the operation range `root_ops..head_ops` onto the `dest_op`. /// /// Returns the new head operation ids as well as some stats. If the old /// operation heads are remapped to the new heads, the operations within the /// range `dest_op..root_ops` become unreachable. /// /// If the source operation range `root_ops..head_ops` was empty, the /// `new_head_ids` will be `[dest_op.id()]`, meaning the `dest_op` is the head. // TODO: Find better place to host this function. It might be an OpStore method. pub fn reparent_range( op_store: &dyn OpStore, root_ops: &[Operation], head_ops: &[Operation], dest_op: &Operation, ) -> OpStoreResult { // Calculate ::root_ops to exclude them from the source range and count the // number of operations that become unreachable. let mut unwanted_ids: HashSet<_> = walk_ancestors(root_ops) .map_ok(|op| op.id().clone()) .try_collect()?; let ops_to_reparent: Vec<_> = walk_ancestors(head_ops) .filter_ok(|op| !unwanted_ids.contains(op.id())) .try_collect()?; for op in walk_ancestors(slice::from_ref(dest_op)) { unwanted_ids.remove(op?.id()); } let unreachable_ids = unwanted_ids; assert!( ops_to_reparent .last() .map_or(true, |op| op.id() != op_store.root_operation_id()), "root operation cannot be rewritten" ); let mut rewritten_ids = HashMap::new(); for old_op in ops_to_reparent.into_iter().rev() { let mut data = old_op.store_operation().clone(); let mut dest_once = Some(dest_op.id()); data.parents = data .parents .iter() .filter_map(|id| rewritten_ids.get(id).or_else(|| dest_once.take())) .cloned() .collect(); let new_id = op_store.write_operation(&data)?; rewritten_ids.insert(old_op.id().clone(), new_id); } let mut dest_once = Some(dest_op.id()); let new_head_ids = head_ops .iter() .filter_map(|op| rewritten_ids.get(op.id()).or_else(|| dest_once.take())) .cloned() .collect(); Ok(ReparentStats { new_head_ids, rewritten_count: rewritten_ids.len(), unreachable_count: unreachable_ids.len(), }) }