jj/lib/src/evolution.rs
Martin von Zweigbergk 82c683bf63 Transaction: rename as_repo_mut() to mut_repo()
I think the `as_` prefix of `as_repo_mut()` makes it sound like it
returns a view of the `Transaction`, but the `MutableRepo` is actually
a part of it. Also, the convention seems to be to put the `mut_` in
the name first if the function returns a name with a matching name
(like `MutableRepo` does).
2021-03-14 00:25:05 -08:00

997 lines
35 KiB
Rust

// Copyright 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::{HashMap, HashSet};
use std::sync::{Arc, Mutex};
use crate::commit::Commit;
use crate::commit_builder::CommitBuilder;
use crate::dag_walk::{bfs, closest_common_node, leaves, walk_ancestors};
use crate::repo::{MutableRepo, ReadonlyRepo, RepoRef};
use crate::repo_path::DirRepoPath;
use crate::rewrite::{merge_commit_trees, rebase_commit};
use crate::settings::UserSettings;
use crate::store::{ChangeId, CommitId};
use crate::store_wrapper::StoreWrapper;
use crate::transaction::Transaction;
use crate::trees::merge_trees;
// TODO: Combine some maps/sets and use a struct as value instead.
// TODO: Move some of this into the index?
#[derive(Debug, Clone, Default)]
struct State {
children: HashMap<CommitId, HashSet<CommitId>>,
/// Contains all successors whether they have the same change id or not.
successors: HashMap<CommitId, HashSet<CommitId>>,
/// Contains the subset of the keys in `successors` for which there is a
/// successor with the same change id.
obsolete_commits: HashSet<CommitId>,
pruned_commits: HashSet<CommitId>,
orphan_commits: HashSet<CommitId>,
/// If there's more than one element in the value, then the change is
/// divergent.
non_obsoletes_by_changeid: HashMap<ChangeId, HashSet<CommitId>>,
}
impl State {
fn calculate(repo: RepoRef) -> State {
let view = repo.view();
let index = repo.index();
let mut state = State::default();
let head_ids: Vec<_> = view.heads().iter().cloned().collect();
let mut change_to_commits = HashMap::new();
for head_id in &head_ids {
state.children.insert(head_id.clone(), HashSet::new());
}
for entry in index.walk_revs(&head_ids, &[]) {
let commit_id = entry.commit_id();
change_to_commits
.entry(entry.change_id().clone())
.or_insert_with(HashSet::new)
.insert(commit_id.clone());
if entry.is_pruned() {
state.pruned_commits.insert(commit_id.clone());
}
for parent_pos in entry.parent_positions() {
let parent_entry = index.entry_by_pos(parent_pos);
let parent_id = parent_entry.commit_id();
state
.children
.entry(parent_id.clone())
.or_insert_with(HashSet::new)
.insert(commit_id.clone());
}
for predecessor_pos in entry.predecessor_positions() {
let predecessor_entry = index.entry_by_pos(predecessor_pos);
let predecessor_id = predecessor_entry.commit_id();
state
.successors
.entry(predecessor_id.clone())
.or_insert_with(HashSet::new)
.insert(commit_id.clone());
if predecessor_entry.change_id() == entry.change_id() {
state.obsolete_commits.insert(predecessor_id.clone());
}
}
}
// Find non-obsolete commits by change id (potentially divergent commits)
for (change_id, commit_ids) in change_to_commits {
let non_obsoletes: HashSet<CommitId> = commit_ids
.difference(&state.obsolete_commits)
.cloned()
.collect();
state
.non_obsoletes_by_changeid
.insert(change_id, non_obsoletes);
}
// Find orphans by walking to the children of obsolete commits
let mut work: Vec<CommitId> = state.obsolete_commits.iter().cloned().collect();
work.extend(state.pruned_commits.iter().cloned());
while !work.is_empty() {
let commit_id = work.pop().unwrap();
for child in state.children.get(&commit_id).unwrap() {
if state.orphan_commits.insert(child.clone()) {
work.push(child.clone());
}
}
}
state.orphan_commits = state
.orphan_commits
.iter()
.filter(|commit_id| {
!(state.obsolete_commits.contains(commit_id)
|| state.pruned_commits.contains(commit_id))
})
.cloned()
.collect();
state
}
fn successors(&self, commit_id: &CommitId) -> HashSet<CommitId> {
self.successors
.get(commit_id)
.cloned()
.unwrap_or_else(HashSet::new)
}
fn is_obsolete(&self, commit_id: &CommitId) -> bool {
self.obsolete_commits.contains(commit_id)
}
fn is_orphan(&self, commit_id: &CommitId) -> bool {
self.orphan_commits.contains(commit_id)
}
fn is_divergent(&self, change_id: &ChangeId) -> bool {
self.non_obsoletes_by_changeid
.get(change_id)
.map_or(false, |non_obsoletes| non_obsoletes.len() > 1)
}
fn add_commit(&mut self, commit: &Commit) {
self.add_commit_data(
commit.id(),
commit.change_id(),
&commit.parent_ids(),
&commit.predecessor_ids(),
commit.is_pruned(),
);
}
fn add_commit_data(
&mut self,
commit_id: &CommitId,
change_id: &ChangeId,
parents: &[CommitId],
predecessors: &[CommitId],
is_pruned: bool,
) {
// TODO: Error out (or ignore?) if the root id is a predecessor or divergent
// (adding the root once should be fine). Perhaps this is not the right
// place to do that (we don't know what the root id is here).
for parent in parents {
self.children
.entry(parent.clone())
.or_default()
.insert(commit_id.clone());
}
if is_pruned {
self.pruned_commits.insert(commit_id.clone());
}
// Update the non_obsoletes_by_changeid by adding the new commit and removing
// the predecessors.
self.non_obsoletes_by_changeid
.entry(change_id.clone())
.or_default()
.insert(commit_id.clone());
for predecessor in predecessors {
self.successors
.entry(predecessor.clone())
.or_default()
.insert(commit_id.clone());
let became_obsolete = self
.non_obsoletes_by_changeid
.get_mut(change_id)
.unwrap()
.remove(predecessor);
// Mark descendants as orphans if the predecessor just became obsolete.
if became_obsolete {
assert!(self.obsolete_commits.insert(predecessor.clone()));
let mut descendants = HashSet::new();
for descendant in bfs(
vec![predecessor.clone()],
Box::new(|commit_id| commit_id.clone()),
Box::new(|commit_id| {
self.children
.get(commit_id)
.cloned()
.unwrap_or_else(HashSet::new)
}),
) {
descendants.insert(descendant);
}
descendants.remove(predecessor);
descendants = descendants
.iter()
.filter(|commit_id| {
!(self.obsolete_commits.contains(commit_id)
|| self.pruned_commits.contains(commit_id))
})
.cloned()
.collect();
self.orphan_commits.extend(descendants);
}
}
// Mark the new commit an orphan if any of its parents are obsolete, pruned, or
// orphans. Note that this has to be done late, in case a parent just got marked
// as obsolete or orphan above.
let is_orphan = parents.iter().any(|parent| {
self.obsolete_commits.contains(parent)
|| self.pruned_commits.contains(parent)
|| self.orphan_commits.contains(commit_id)
});
if is_orphan {
self.orphan_commits.insert(commit_id.clone());
}
}
pub fn new_parent(&self, store: &StoreWrapper, old_parent_id: &CommitId) -> HashSet<CommitId> {
let mut new_parents = HashSet::new();
if let Some(successor_ids) = self.successors.get(old_parent_id) {
let old_parent = store.get_commit(old_parent_id).unwrap();
let successors: HashSet<_> = successor_ids
.iter()
.map(|id| store.get_commit(id).unwrap())
.collect();
let mut children = HashMap::new();
for successor in &successors {
for parent in successor.parents() {
if let Some(parent) = successors.get(&parent) {
children
.entry(parent.clone())
.or_insert_with(HashSet::new)
.insert(successor.clone());
}
}
}
let mut all_candidates = HashSet::new();
for successor in &successors {
if successor.change_id() != old_parent.change_id() {
continue;
}
// Start with the successor as candidate.
let mut candidates = HashSet::new();
candidates.insert(successor.clone());
// If the successor has children that are successors of the same
// commit, we consider the original commit to be a split. We then return
// the tip-most successor.
candidates = leaves(
candidates,
&mut |commit: &Commit| -> HashSet<Commit> {
if let Some(children) = children.get(commit) {
children.clone()
} else {
HashSet::new()
}
},
&|commit: &Commit| -> CommitId { commit.id().clone() },
);
// If a successor is pruned, use its parent(s) instead.
candidates = leaves(
candidates,
&mut |commit: &Commit| -> Vec<Commit> {
if commit.is_pruned() {
commit.parents()
} else {
vec![]
}
},
&|commit: &Commit| -> CommitId { commit.id().clone() },
);
for candidate in candidates {
all_candidates.insert(candidate.clone());
}
}
// Filter out candidates that are ancestors of or other candidates.
let non_heads: Vec<_> = all_candidates
.iter()
.flat_map(|commit| commit.parents())
.collect();
for commit in walk_ancestors(non_heads) {
all_candidates.remove(&commit);
}
for candidate in all_candidates {
// TODO: Make this not recursive
for effective_successor in self.new_parent(store, candidate.id()) {
new_parents.insert(effective_successor);
}
}
}
if new_parents.is_empty() {
// TODO: Should we go to the parents here too if the commit is pruned?
new_parents.insert(old_parent_id.clone());
}
new_parents
}
}
pub enum EvolutionRef<'a, 'm: 'a, 'r: 'm> {
Readonly(&'a ReadonlyEvolution<'r>),
Mutable(&'a MutableEvolution<'m, 'r>),
}
impl EvolutionRef<'_, '_, '_> {
pub fn successors(&self, commit_id: &CommitId) -> HashSet<CommitId> {
match self {
EvolutionRef::Readonly(evolution) => evolution.successors(commit_id),
EvolutionRef::Mutable(evolution) => evolution.successors(commit_id),
}
}
pub fn is_obsolete(&self, commit_id: &CommitId) -> bool {
match self {
EvolutionRef::Readonly(evolution) => evolution.is_obsolete(commit_id),
EvolutionRef::Mutable(evolution) => evolution.is_obsolete(commit_id),
}
}
pub fn is_orphan(&self, commit_id: &CommitId) -> bool {
match self {
EvolutionRef::Readonly(evolution) => evolution.is_orphan(commit_id),
EvolutionRef::Mutable(evolution) => evolution.is_orphan(commit_id),
}
}
pub fn is_divergent(&self, change_id: &ChangeId) -> bool {
match self {
EvolutionRef::Readonly(evolution) => evolution.is_divergent(change_id),
EvolutionRef::Mutable(evolution) => evolution.is_divergent(change_id),
}
}
/// Given a current parent, finds the new parent candidates. If the current
/// parent is not obsolete, then a singleton set of that commit will be
/// returned.
///
/// * If a successor is pruned, its parent(s) will instead be included (or
/// their parents if they are also pruned).
///
/// * If the commit has multiple live successors, the tip-most one(s) of
/// them will be chosen.
///
/// The second case is more complex than it probably seems. For example,
/// let's say commit A was split into B, A', and C (where A' has the same
/// change id as A). Then C is rebased to somewhere else and becomes C'.
/// We will choose that C' as effective successor even though it has a
/// different change id and is not a descendant of one that does.
pub fn new_parent(&self, old_parent_id: &CommitId) -> HashSet<CommitId> {
match self {
EvolutionRef::Readonly(evolution) => evolution.new_parent(old_parent_id),
EvolutionRef::Mutable(evolution) => evolution.new_parent(old_parent_id),
}
}
}
pub struct ReadonlyEvolution<'r> {
repo: &'r ReadonlyRepo,
state: Mutex<Option<Arc<State>>>,
}
pub trait EvolveListener {
fn orphan_evolved(&mut self, tx: &mut Transaction, orphan: &Commit, new_commit: &Commit);
fn orphan_target_ambiguous(&mut self, tx: &mut Transaction, orphan: &Commit);
fn divergent_resolved(
&mut self,
tx: &mut Transaction,
divergents: &[Commit],
resolved: &Commit,
);
fn divergent_no_common_predecessor(
&mut self,
tx: &mut Transaction,
commit1: &Commit,
commit2: &Commit,
);
}
impl<'r> ReadonlyEvolution<'r> {
pub fn new(repo: &'r ReadonlyRepo) -> Self {
ReadonlyEvolution {
repo,
state: Mutex::new(None),
}
}
fn get_state(&self) -> Arc<State> {
let mut locked_state = self.state.lock().unwrap();
if locked_state.is_none() {
locked_state.replace(Arc::new(State::calculate(self.repo.as_repo_ref())));
}
locked_state.as_ref().unwrap().clone()
}
pub fn start_modification<'m>(&self, repo: &'m MutableRepo<'r>) -> MutableEvolution<'r, 'm> {
MutableEvolution {
repo,
state: self.get_state().as_ref().clone(),
}
}
pub fn successors(&self, commit_id: &CommitId) -> HashSet<CommitId> {
self.get_state().successors(commit_id)
}
pub fn is_obsolete(&self, commit_id: &CommitId) -> bool {
self.get_state().is_obsolete(commit_id)
}
pub fn is_orphan(&self, commit_id: &CommitId) -> bool {
self.get_state().is_orphan(commit_id)
}
pub fn is_divergent(&self, change_id: &ChangeId) -> bool {
self.get_state().is_divergent(change_id)
}
pub fn new_parent(&self, old_parent_id: &CommitId) -> HashSet<CommitId> {
self.get_state()
.new_parent(self.repo.store(), old_parent_id)
}
}
pub struct MutableEvolution<'r: 'm, 'm> {
repo: &'m MutableRepo<'r>,
state: State,
}
impl MutableEvolution<'_, '_> {
pub fn successors(&self, commit_id: &CommitId) -> HashSet<CommitId> {
self.state.successors(commit_id)
}
pub fn is_obsolete(&self, commit_id: &CommitId) -> bool {
self.state.is_obsolete(commit_id)
}
pub fn is_orphan(&self, commit_id: &CommitId) -> bool {
self.state.is_orphan(commit_id)
}
pub fn is_divergent(&self, change_id: &ChangeId) -> bool {
self.state.is_divergent(change_id)
}
pub fn new_parent(&self, old_parent_id: &CommitId) -> HashSet<CommitId> {
self.state.new_parent(self.repo.store(), old_parent_id)
}
pub fn add_commit(&mut self, commit: &Commit) {
self.state.add_commit(commit);
}
pub fn invalidate(&mut self) {
self.state = State::calculate(self.repo.as_repo_ref());
}
}
pub fn evolve(
user_settings: &UserSettings,
tx: &mut Transaction,
listener: &mut dyn EvolveListener,
) {
let store = tx.store().clone();
// Resolving divergence can creates new orphans but not vice versa, so resolve
// divergence first.
let divergent_changes: Vec<_> = tx
.mut_repo()
.evolution()
.state
.non_obsoletes_by_changeid
.values()
.filter(|non_obsoletes| non_obsoletes.len() > 1)
.cloned()
.collect();
for commit_ids in divergent_changes {
let commits: HashSet<Commit> = commit_ids
.iter()
.map(|id| store.get_commit(&id).unwrap())
.collect();
evolve_divergent_change(user_settings, &store, tx, listener, &commits);
}
// Dom't reuse the state from above, since the divergence-resolution may have
// created new orphans, or resolved existing orphans.
let orphans: HashSet<Commit> = tx
.mut_repo()
.evolution()
.state
.orphan_commits
.iter()
.map(|id| store.get_commit(&id).unwrap())
.collect();
let non_heads: HashSet<Commit> = orphans.iter().flat_map(|commit| commit.parents()).collect();
let orphan_heads: HashSet<Commit> = orphans.difference(&non_heads).cloned().collect();
let mut orphans_topo_order = vec![];
for commit in bfs(
orphan_heads,
Box::new(|commit| commit.id().clone()),
Box::new(|commit| {
commit
.parents()
.iter()
.filter(|commit| orphans.contains(commit))
.cloned()
.collect::<Vec<_>>()
}),
) {
orphans_topo_order.push(commit);
}
while !orphans_topo_order.is_empty() {
let orphan = orphans_topo_order.pop().unwrap();
let old_parents = orphan.parents();
let mut new_parents = vec![];
let mut ambiguous_new_parents = false;
let evolution = tx.mut_repo().evolution();
for old_parent in &old_parents {
let new_parent_candidates = evolution.new_parent(old_parent.id());
if new_parent_candidates.len() > 1 {
ambiguous_new_parents = true;
break;
}
new_parents.push(
store
.get_commit(new_parent_candidates.iter().next().unwrap())
.unwrap(),
);
}
if ambiguous_new_parents {
listener.orphan_target_ambiguous(tx, &orphan);
} else {
let new_commit = rebase_commit(user_settings, tx, &orphan, &new_parents);
listener.orphan_evolved(tx, &orphan, &new_commit);
}
}
}
fn evolve_divergent_change(
user_settings: &UserSettings,
store: &Arc<StoreWrapper>,
tx: &mut Transaction,
listener: &mut dyn EvolveListener,
commits: &HashSet<Commit>,
) {
// Resolve divergence pair-wise, starting with the two oldest commits.
let mut commits: Vec<Commit> = commits.iter().cloned().collect();
commits.sort_by(|a: &Commit, b: &Commit| a.committer().timestamp.cmp(&b.committer().timestamp));
commits.reverse();
// Create a copy to pass to the listener
let sources = commits.clone();
while commits.len() > 1 {
let commit2 = commits.pop().unwrap();
let commit1 = commits.pop().unwrap();
let common_predecessor = closest_common_node(
vec![commit1.clone()],
vec![commit2.clone()],
&|commit: &Commit| commit.predecessors(),
&|commit: &Commit| commit.id().clone(),
);
match common_predecessor {
None => {
listener.divergent_no_common_predecessor(tx, &commit1, &commit2);
return;
}
Some(common_predecessor) => {
let resolved_commit = evolve_two_divergent_commits(
user_settings,
store,
tx,
&common_predecessor,
&commit1,
&commit2,
);
commits.push(resolved_commit);
}
}
}
let resolved = commits.pop().unwrap();
listener.divergent_resolved(tx, &sources, &resolved);
}
fn evolve_two_divergent_commits(
user_settings: &UserSettings,
store: &Arc<StoreWrapper>,
tx: &mut Transaction,
common_predecessor: &Commit,
commit1: &Commit,
commit2: &Commit,
) -> Commit {
let new_parents = commit1.parents();
let rebased_tree2 = if commit2.parents() == new_parents {
commit2.tree()
} else {
let old_base_tree = merge_commit_trees(tx.as_repo_ref(), &commit2.parents());
let new_base_tree = merge_commit_trees(tx.as_repo_ref(), &new_parents);
let tree_id = merge_trees(&new_base_tree, &old_base_tree, &commit2.tree()).unwrap();
store.get_tree(&DirRepoPath::root(), &tree_id).unwrap()
};
let rebased_predecessor_tree = if common_predecessor.parents() == new_parents {
common_predecessor.tree()
} else {
let old_base_tree = merge_commit_trees(tx.as_repo_ref(), &common_predecessor.parents());
let new_base_tree = merge_commit_trees(tx.as_repo_ref(), &new_parents);
let tree_id =
merge_trees(&new_base_tree, &old_base_tree, &common_predecessor.tree()).unwrap();
store.get_tree(&DirRepoPath::root(), &tree_id).unwrap()
};
let resolved_tree =
merge_trees(&commit1.tree(), &rebased_predecessor_tree, &rebased_tree2).unwrap();
// TODO: Merge commit description and other commit metadata. How do we deal with
// conflicts? It's probably best to interactively ask the caller (which
// might ask the user in interactive use).
CommitBuilder::for_rewrite_from(user_settings, store, &commit1)
.set_tree(resolved_tree)
.set_predecessors(vec![commit1.id().clone(), commit2.id().clone()])
.write_to_transaction(tx)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn add_commit_data_initial() {
let mut state = State::default();
let initial_commit = CommitId::from_hex("aaa111");
let initial_change = ChangeId::from_hex("aaa111");
state.add_commit_data(&initial_commit, &initial_change, &[], &[], false);
assert!(!state.is_obsolete(&initial_commit));
assert!(!state.is_orphan(&initial_commit));
assert!(!state.is_divergent(&initial_change));
}
#[test]
fn add_commit_data_pruned() {
let mut state = State::default();
let initial_commit = CommitId::from_hex("aaa111");
let initial_change = ChangeId::from_hex("aaa111");
state.add_commit_data(&initial_commit, &initial_change, &[], &[], true);
assert!(!state.is_obsolete(&initial_commit));
assert!(!state.is_orphan(&initial_commit));
assert!(!state.is_divergent(&initial_change));
}
#[test]
fn add_commit_data_creating_orphan() {
let mut state = State::default();
let initial_commit = CommitId::from_hex("aaa111");
let initial_change = ChangeId::from_hex("aaa111");
let orphan_commit1 = CommitId::from_hex("bbb111");
let orphan_change1 = ChangeId::from_hex("bbb111");
let orphan_commit2 = CommitId::from_hex("ccc111");
let orphan_change2 = ChangeId::from_hex("ccc111");
let obsolete_orphan_commit = CommitId::from_hex("ddd111");
let obsolete_orphan_change = ChangeId::from_hex("ddd111");
let pruned_orphan_commit = CommitId::from_hex("eee111");
let rewritten_commit = CommitId::from_hex("aaa222");
state.add_commit_data(&initial_commit, &initial_change, &[], &[], false);
state.add_commit_data(
&orphan_commit1,
&orphan_change1,
&[initial_commit.clone()],
&[],
false,
);
state.add_commit_data(
&orphan_commit2,
&orphan_change2,
&[orphan_commit1.clone()],
&[],
false,
);
state.add_commit_data(
&obsolete_orphan_commit,
&obsolete_orphan_change,
&[initial_commit.clone()],
&[],
false,
);
state.add_commit_data(
&pruned_orphan_commit,
&obsolete_orphan_change,
&[initial_commit.clone()],
&[obsolete_orphan_commit.clone()],
true,
);
state.add_commit_data(
&rewritten_commit,
&initial_change,
&[],
&[initial_commit],
false,
);
assert!(state.is_orphan(&orphan_commit1));
assert!(state.is_orphan(&orphan_commit2));
assert!(!state.is_orphan(&obsolete_orphan_commit));
assert!(!state.is_orphan(&pruned_orphan_commit));
assert!(!state.is_obsolete(&orphan_commit1));
assert!(!state.is_obsolete(&orphan_commit2));
assert!(state.is_obsolete(&obsolete_orphan_commit));
assert!(!state.is_obsolete(&pruned_orphan_commit));
}
#[test]
fn add_commit_data_new_commit_on_obsolete() {
let mut state = State::default();
let initial_commit = CommitId::from_hex("aaa111");
let initial_change = ChangeId::from_hex("aaa111");
let rewritten_commit = CommitId::from_hex("aaa222");
let new_commit = CommitId::from_hex("bbb111");
let new_change = ChangeId::from_hex("bbb111");
state.add_commit_data(&initial_commit, &initial_change, &[], &[], false);
state.add_commit_data(
&rewritten_commit,
&initial_change,
&[],
&[initial_commit.clone()],
false,
);
state.add_commit_data(&new_commit, &new_change, &[initial_commit], &[], false);
assert!(state.is_orphan(&new_commit));
}
#[test]
fn add_commit_data_new_commit_on_orphan() {
let mut state = State::default();
let initial_commit = CommitId::from_hex("aaa111");
let initial_change = ChangeId::from_hex("aaa111");
let rewritten_commit = CommitId::from_hex("aaa222");
let orphan_commit = CommitId::from_hex("bbb111");
let orphan_change = ChangeId::from_hex("bbb111");
let new_commit = CommitId::from_hex("bbb111");
let new_change = ChangeId::from_hex("bbb111");
state.add_commit_data(&initial_commit, &initial_change, &[], &[], false);
state.add_commit_data(
&rewritten_commit,
&initial_change,
&[],
&[initial_commit.clone()],
false,
);
state.add_commit_data(
&orphan_commit,
&orphan_change,
&[initial_commit],
&[],
false,
);
state.add_commit_data(&new_commit, &new_change, &[orphan_commit], &[], false);
assert!(state.is_orphan(&new_commit));
}
#[test]
fn add_commit_data_new_commit_on_pruned() {
let mut state = State::default();
let pruned_commit = CommitId::from_hex("aaa111");
let pruned_change = ChangeId::from_hex("aaa111");
let new_commit = CommitId::from_hex("bbb111");
let new_change = ChangeId::from_hex("bbb111");
state.add_commit_data(&pruned_commit, &pruned_change, &[], &[], true);
state.add_commit_data(&new_commit, &new_change, &[pruned_commit], &[], false);
assert!(state.is_orphan(&new_commit));
}
#[test]
fn add_commit_data_rewrite_as_child() {
let mut state = State::default();
let initial_commit = CommitId::from_hex("aaa111");
let initial_change = ChangeId::from_hex("aaa111");
let rewritten_commit = CommitId::from_hex("aaa222");
state.add_commit_data(&initial_commit, &initial_change, &[], &[], false);
// The new commit is both a child and a successor of the initial commit
state.add_commit_data(
&rewritten_commit,
&initial_change,
&[initial_commit.clone()],
&[initial_commit.clone()],
false,
);
assert!(state.is_obsolete(&initial_commit));
assert!(!state.is_obsolete(&rewritten_commit));
assert!(!state.is_orphan(&initial_commit));
assert!(state.is_orphan(&rewritten_commit));
assert!(!state.is_divergent(&initial_change));
}
#[test]
fn add_commit_data_duplicates() {
let mut state = State::default();
let initial_commit = CommitId::from_hex("aaa111");
let initial_change = ChangeId::from_hex("aaa111");
let duplicate_commit1 = CommitId::from_hex("bbb111");
let duplicate_change1 = ChangeId::from_hex("bbb111");
let duplicate_commit2 = CommitId::from_hex("ccc111");
let duplicate_change2 = ChangeId::from_hex("ccc111");
state.add_commit_data(&initial_commit, &initial_change, &[], &[], false);
state.add_commit_data(
&duplicate_commit1,
&duplicate_change1,
&[],
&[initial_commit.clone()],
false,
);
state.add_commit_data(
&duplicate_commit2,
&duplicate_change2,
&[],
&[initial_commit.clone()],
false,
);
assert!(!state.is_obsolete(&initial_commit));
assert!(!state.is_obsolete(&duplicate_commit1));
assert!(!state.is_obsolete(&duplicate_commit2));
assert!(!state.is_divergent(&initial_change));
assert!(!state.is_divergent(&duplicate_change1));
assert!(!state.is_divergent(&duplicate_change2));
assert_eq!(
state.successors(&initial_commit),
hashset!(duplicate_commit1, duplicate_commit2)
);
}
#[test]
fn add_commit_data_divergent() {
let mut state = State::default();
let initial_commit = CommitId::from_hex("aaa111");
let initial_change = ChangeId::from_hex("aaa111");
let rewritten_commit1 = CommitId::from_hex("aaa222");
let rewritten_commit2 = CommitId::from_hex("aaa333");
state.add_commit_data(&initial_commit, &initial_change, &[], &[], false);
state.add_commit_data(
&rewritten_commit1,
&initial_change,
&[],
&[initial_commit.clone()],
false,
);
state.add_commit_data(
&rewritten_commit2,
&initial_change,
&[],
&[initial_commit.clone()],
false,
);
assert!(state.is_obsolete(&initial_commit));
assert!(!state.is_obsolete(&rewritten_commit1));
assert!(!state.is_obsolete(&rewritten_commit2));
assert!(state.is_divergent(&initial_change));
assert_eq!(
state.successors(&initial_commit),
hashset!(rewritten_commit1, rewritten_commit2)
);
}
#[test]
fn add_commit_data_divergent_pruned() {
let mut state = State::default();
let initial_commit = CommitId::from_hex("aaa111");
let initial_change = ChangeId::from_hex("aaa111");
let rewritten_pruned = CommitId::from_hex("aaa222");
let rewritten_non_pruned = CommitId::from_hex("aaa333");
state.add_commit_data(&initial_commit, &initial_change, &[], &[], false);
state.add_commit_data(
&rewritten_pruned,
&initial_change,
&[],
&[initial_commit.clone()],
true,
);
state.add_commit_data(
&rewritten_non_pruned,
&initial_change,
&[],
&[initial_commit.clone()],
false,
);
assert!(state.is_obsolete(&initial_commit));
assert!(!state.is_obsolete(&rewritten_pruned));
assert!(!state.is_obsolete(&rewritten_non_pruned));
// It's still divergent even if one side is pruned
assert!(state.is_divergent(&initial_change));
assert_eq!(
state.successors(&initial_commit),
hashset!(rewritten_pruned, rewritten_non_pruned)
);
}
#[test]
fn add_commit_data_divergent_unrelated() {
let mut state = State::default();
let initial_commit = CommitId::from_hex("aaa111");
let initial_change = ChangeId::from_hex("aaa111");
let rewritten_commit = CommitId::from_hex("aaa222");
state.add_commit_data(&initial_commit, &initial_change, &[], &[], false);
// Same change id as the initial commit but no predecessor relationship to it
state.add_commit_data(&rewritten_commit, &initial_change, &[], &[], false);
assert!(!state.is_obsolete(&initial_commit));
assert!(!state.is_obsolete(&rewritten_commit));
assert!(state.is_divergent(&initial_change));
assert_eq!(state.successors(&initial_commit), hashset!());
}
#[test]
fn add_commit_data_divergent_convergent() {
let mut state = State::default();
let initial_commit = CommitId::from_hex("aaa111");
let initial_change = ChangeId::from_hex("aaa111");
let rewritten_commit1 = CommitId::from_hex("aaa222");
let rewritten_commit2 = CommitId::from_hex("aaa333");
let convergent_commit = CommitId::from_hex("aaa444");
state.add_commit_data(&initial_commit, &initial_change, &[], &[], false);
state.add_commit_data(
&rewritten_commit1,
&initial_change,
&[],
&[initial_commit.clone()],
false,
);
state.add_commit_data(
&rewritten_commit2,
&initial_change,
&[],
&[initial_commit.clone()],
false,
);
state.add_commit_data(
&convergent_commit,
&initial_change,
&[],
&[rewritten_commit1.clone(), rewritten_commit2.clone()],
false,
);
assert!(state.is_obsolete(&initial_commit));
assert!(state.is_obsolete(&rewritten_commit1));
assert!(state.is_obsolete(&rewritten_commit2));
assert!(!state.is_obsolete(&convergent_commit));
assert!(!state.is_divergent(&initial_change));
assert_eq!(
state.successors(&rewritten_commit1),
hashset!(convergent_commit.clone())
);
assert_eq!(
state.successors(&rewritten_commit2),
hashset!(convergent_commit)
);
}
}