jj/lib/src/rewrite.rs
dploch c970181ae2 revset: change the commits() iterator to return RevsetEvaluationError
This facilatates a change to the Revset trait in the next commit.
2024-10-18 17:09:35 -04:00

965 lines
36 KiB
Rust

// Copyright 2020 The Jujutsu Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#![allow(missing_docs)]
use std::collections::HashMap;
use std::collections::HashSet;
use std::sync::Arc;
use futures::StreamExt;
use indexmap::IndexMap;
use indexmap::IndexSet;
use itertools::Itertools;
use pollster::FutureExt;
use tracing::instrument;
use crate::backend::BackendError;
use crate::backend::BackendResult;
use crate::backend::CommitId;
use crate::backend::MergedTreeId;
use crate::commit::Commit;
use crate::commit::CommitIteratorExt;
use crate::commit_builder::CommitBuilder;
use crate::dag_walk;
use crate::index::Index;
use crate::matchers::Matcher;
use crate::matchers::Visit;
use crate::merged_tree::MergedTree;
use crate::merged_tree::MergedTreeBuilder;
use crate::merged_tree::TreeDiffEntry;
use crate::repo::MutableRepo;
use crate::repo::Repo;
use crate::repo_path::RepoPath;
use crate::revset::RevsetExpression;
use crate::revset::RevsetIteratorExt;
use crate::settings::UserSettings;
use crate::store::Store;
/// Merges `commits` and tries to resolve any conflicts recursively.
#[instrument(skip(repo))]
pub fn merge_commit_trees(repo: &dyn Repo, commits: &[Commit]) -> BackendResult<MergedTree> {
if let [commit] = commits {
commit.tree()
} else {
merge_commit_trees_no_resolve_without_repo(repo.store(), repo.index(), commits)?.resolve()
}
}
/// Merges `commits` without attempting to resolve file conflicts.
#[instrument(skip(index))]
pub fn merge_commit_trees_no_resolve_without_repo(
store: &Arc<Store>,
index: &dyn Index,
commits: &[Commit],
) -> BackendResult<MergedTree> {
if commits.is_empty() {
Ok(store.get_root_tree(&store.empty_merged_tree_id())?)
} else {
let mut new_tree = commits[0].tree()?;
let commit_ids = commits
.iter()
.map(|commit| commit.id().clone())
.collect_vec();
for (i, other_commit) in commits.iter().enumerate().skip(1) {
let ancestor_ids = index.common_ancestors(&commit_ids[0..i], &commit_ids[i..][..1]);
let ancestors: Vec<_> = ancestor_ids
.iter()
.map(|id| store.get_commit(id))
.try_collect()?;
let ancestor_tree =
merge_commit_trees_no_resolve_without_repo(store, index, &ancestors)?;
let other_tree = other_commit.tree()?;
new_tree = new_tree.merge_no_resolve(&ancestor_tree, &other_tree);
}
Ok(new_tree)
}
}
/// Restore matching paths from the source into the destination.
pub fn restore_tree(
source: &MergedTree,
destination: &MergedTree,
matcher: &dyn Matcher,
) -> BackendResult<MergedTreeId> {
if matcher.visit(RepoPath::root()) == Visit::AllRecursively {
// Optimization for a common case
Ok(source.id())
} else {
// TODO: We should be able to not traverse deeper in the diff if the matcher
// matches an entire subtree.
let mut tree_builder = MergedTreeBuilder::new(destination.id().clone());
async {
// TODO: handle copy tracking
let mut diff_stream = source.diff_stream(destination, matcher);
while let Some(TreeDiffEntry {
path: repo_path,
values,
}) = diff_stream.next().await
{
let (source_value, _destination_value) = values?;
tree_builder.set_or_remove(repo_path, source_value);
}
Ok::<(), BackendError>(())
}
.block_on()?;
tree_builder.write_tree(destination.store())
}
}
pub fn rebase_commit(
settings: &UserSettings,
mut_repo: &mut MutableRepo,
old_commit: Commit,
new_parents: Vec<CommitId>,
) -> BackendResult<Commit> {
let rewriter = CommitRewriter::new(mut_repo, old_commit, new_parents);
let builder = rewriter.rebase(settings)?;
builder.write()
}
/// Helps rewrite a commit.
pub struct CommitRewriter<'repo> {
mut_repo: &'repo mut MutableRepo,
old_commit: Commit,
new_parents: Vec<CommitId>,
}
impl<'repo> CommitRewriter<'repo> {
/// Create a new instance.
pub fn new(
mut_repo: &'repo mut MutableRepo,
old_commit: Commit,
new_parents: Vec<CommitId>,
) -> Self {
Self {
mut_repo,
old_commit,
new_parents,
}
}
/// Returns the `MutableRepo`.
pub fn mut_repo(&mut self) -> &mut MutableRepo {
self.mut_repo
}
/// The commit we're rewriting.
pub fn old_commit(&self) -> &Commit {
&self.old_commit
}
/// Get the old commit's intended new parents.
pub fn new_parents(&self) -> &[CommitId] {
&self.new_parents
}
/// Set the old commit's intended new parents.
pub fn set_new_parents(&mut self, new_parents: Vec<CommitId>) {
self.new_parents = new_parents;
}
/// Set the old commit's intended new parents to be the rewritten versions
/// of the given parents.
pub fn set_new_rewritten_parents(&mut self, unrewritten_parents: &[CommitId]) {
self.new_parents = self.mut_repo.new_parents(unrewritten_parents);
}
/// Update the intended new parents by replacing any occurrence of
/// `old_parent` by `new_parents`.
pub fn replace_parent<'a>(
&mut self,
old_parent: &CommitId,
new_parents: impl IntoIterator<Item = &'a CommitId>,
) {
if let Some(i) = self.new_parents.iter().position(|p| p == old_parent) {
self.new_parents
.splice(i..i + 1, new_parents.into_iter().cloned());
let mut unique = HashSet::new();
self.new_parents.retain(|p| unique.insert(p.clone()));
}
}
/// Checks if the intended new parents are different from the old commit's
/// parents.
pub fn parents_changed(&self) -> bool {
self.new_parents != self.old_commit.parent_ids()
}
/// If a merge commit would end up with one parent being an ancestor of the
/// other, then filter out the ancestor.
pub fn simplify_ancestor_merge(&mut self) {
let head_set: HashSet<_> = self
.mut_repo
.index()
.heads(&mut self.new_parents.iter())
.into_iter()
.collect();
self.new_parents.retain(|parent| head_set.contains(parent));
}
/// Records the old commit as abandoned with the new parents.
pub fn abandon(self) {
let old_commit_id = self.old_commit.id().clone();
let new_parents = self.new_parents;
self.mut_repo
.record_abandoned_commit_with_parents(old_commit_id, new_parents);
}
/// Rebase the old commit onto the new parents. Returns a `CommitBuilder`
/// for the new commit. Returns `None` if the commit was abandoned.
pub fn rebase_with_empty_behavior(
self,
settings: &UserSettings,
empty: EmptyBehaviour,
) -> BackendResult<Option<CommitBuilder<'repo>>> {
let old_parents: Vec<_> = self.old_commit.parents().try_collect()?;
let old_parent_trees = old_parents
.iter()
.map(|parent| parent.tree_id().clone())
.collect_vec();
let new_parents: Vec<_> = self
.new_parents
.iter()
.map(|new_parent_id| self.mut_repo.store().get_commit(new_parent_id))
.try_collect()?;
let new_parent_trees = new_parents
.iter()
.map(|parent| parent.tree_id().clone())
.collect_vec();
let (was_empty, new_tree_id) = if new_parent_trees == old_parent_trees {
(
// Optimization: was_empty is only used for newly empty, but when the
// parents haven't changed it can't be newly empty.
true,
// Optimization: Skip merging.
self.old_commit.tree_id().clone(),
)
} else {
let old_base_tree = merge_commit_trees(self.mut_repo, &old_parents)?;
let new_base_tree = merge_commit_trees(self.mut_repo, &new_parents)?;
let old_tree = self.old_commit.tree()?;
(
old_base_tree.id() == *self.old_commit.tree_id(),
new_base_tree.merge(&old_base_tree, &old_tree)?.id(),
)
};
// Ensure we don't abandon commits with multiple parents (merge commits), even
// if they're empty.
if let [parent] = &new_parents[..] {
let should_abandon = match empty {
EmptyBehaviour::Keep => false,
EmptyBehaviour::AbandonNewlyEmpty => *parent.tree_id() == new_tree_id && !was_empty,
EmptyBehaviour::AbandonAllEmpty => *parent.tree_id() == new_tree_id,
};
if should_abandon {
self.abandon();
return Ok(None);
}
}
let builder = self
.mut_repo
.rewrite_commit(settings, &self.old_commit)
.set_parents(self.new_parents)
.set_tree_id(new_tree_id);
Ok(Some(builder))
}
/// Rebase the old commit onto the new parents. Returns a `CommitBuilder`
/// for the new commit.
pub fn rebase(self, settings: &UserSettings) -> BackendResult<CommitBuilder<'repo>> {
let builder = self.rebase_with_empty_behavior(settings, EmptyBehaviour::Keep)?;
Ok(builder.unwrap())
}
/// Rewrite the old commit onto the new parents without changing its
/// contents. Returns a `CommitBuilder` for the new commit.
pub fn reparent(self, settings: &UserSettings) -> BackendResult<CommitBuilder<'repo>> {
Ok(self
.mut_repo
.rewrite_commit(settings, &self.old_commit)
.set_parents(self.new_parents))
}
}
pub enum RebasedCommit {
Rewritten(Commit),
Abandoned { parent: Commit },
}
pub fn rebase_commit_with_options(
settings: &UserSettings,
mut rewriter: CommitRewriter<'_>,
options: &RebaseOptions,
) -> BackendResult<RebasedCommit> {
// If specified, don't create commit where one parent is an ancestor of another.
if options.simplify_ancestor_merge {
rewriter.simplify_ancestor_merge();
}
// TODO: avoid this lookup by not returning the old parent for
// RebasedCommit::Abandoned
let store = rewriter.mut_repo().store().clone();
let single_parent = match &rewriter.new_parents[..] {
[parent] => Some(store.get_commit(parent)?),
_ => None,
};
let new_parents = rewriter.new_parents.clone();
if let Some(builder) = rewriter.rebase_with_empty_behavior(settings, options.empty)? {
let new_commit = builder.write()?;
Ok(RebasedCommit::Rewritten(new_commit))
} else {
assert_eq!(new_parents.len(), 1);
Ok(RebasedCommit::Abandoned {
parent: single_parent.unwrap(),
})
}
}
/// Moves changes from `sources` to the `destination` parent, returns new tree.
pub fn rebase_to_dest_parent(
repo: &dyn Repo,
sources: &[Commit],
destination: &Commit,
) -> BackendResult<MergedTree> {
if let [source] = sources {
if source.parent_ids() == destination.parent_ids() {
return source.tree();
}
}
sources.iter().try_fold(
destination.parent_tree(repo)?,
|destination_tree, source| {
let source_parent_tree = source.parent_tree(repo)?;
let source_tree = source.tree()?;
destination_tree.merge(&source_parent_tree, &source_tree)
},
)
}
#[derive(Clone, Copy, Default, PartialEq, Eq, Debug)]
pub enum EmptyBehaviour {
/// Always keep empty commits
#[default]
Keep,
/// Skips commits that would be empty after the rebase, but that were not
/// originally empty.
/// Will never skip merge commits with multiple non-empty parents.
AbandonNewlyEmpty,
/// Skips all empty commits, including ones that were empty before the
/// rebase.
/// Will never skip merge commits with multiple non-empty parents.
AbandonAllEmpty,
}
/// Controls the configuration of a rebase.
// If we wanted to add a flag similar to `git rebase --ignore-date`, then this
// makes it much easier by ensuring that the only changes required are to
// change the RebaseOptions construction in the CLI, and changing the
// rebase_commit function to actually use the flag, and ensure we don't need to
// plumb it in.
#[derive(Clone, Default, PartialEq, Eq, Debug)]
pub struct RebaseOptions {
pub empty: EmptyBehaviour,
/// If a merge commit would end up with one parent being an ancestor of the
/// other, then filter out the ancestor.
pub simplify_ancestor_merge: bool,
}
pub(crate) struct DescendantRebaser<'settings, 'repo> {
settings: &'settings UserSettings,
mut_repo: &'repo mut MutableRepo,
// In reverse order (parents after children), so we can remove the last one to rebase first.
to_visit: Vec<Commit>,
rebased: HashMap<CommitId, CommitId>,
// Options to apply during a rebase.
options: RebaseOptions,
}
impl<'settings, 'repo> DescendantRebaser<'settings, 'repo> {
/// Panics if any commit is rewritten to its own descendant.
///
/// There should not be any cycles in the `rewritten` map (e.g. A is
/// rewritten to B, which is rewritten to A). The same commit should not
/// be rewritten and abandoned at the same time. In either case, panics are
/// likely when using the DescendantRebaser.
pub fn new(
settings: &'settings UserSettings,
mut_repo: &'repo mut MutableRepo,
to_visit: Vec<Commit>,
) -> DescendantRebaser<'settings, 'repo> {
DescendantRebaser {
settings,
mut_repo,
to_visit,
rebased: Default::default(),
options: Default::default(),
}
}
/// Returns options that can be set.
pub fn mut_options(&mut self) -> &mut RebaseOptions {
&mut self.options
}
/// Returns a map from `CommitId` of old commit to new commit. Includes the
/// commits rebase so far. Does not include the inputs passed to
/// `rebase_descendants`.
pub fn into_map(self) -> HashMap<CommitId, CommitId> {
self.rebased
}
fn rebase_one(&mut self, old_commit: Commit) -> BackendResult<()> {
let old_commit_id = old_commit.id().clone();
let old_parent_ids = old_commit.parent_ids();
let new_parent_ids = self.mut_repo.new_parents(old_parent_ids);
let rewriter = CommitRewriter::new(self.mut_repo, old_commit, new_parent_ids);
if !rewriter.parents_changed() {
// The commit is already in place.
return Ok(());
}
let rebased_commit: RebasedCommit =
rebase_commit_with_options(self.settings, rewriter, &self.options)?;
let new_commit = match rebased_commit {
RebasedCommit::Rewritten(new_commit) => new_commit,
RebasedCommit::Abandoned { parent } => parent,
};
self.rebased
.insert(old_commit_id.clone(), new_commit.id().clone());
Ok(())
}
pub fn rebase_all(&mut self) -> BackendResult<()> {
while let Some(old_commit) = self.to_visit.pop() {
self.rebase_one(old_commit)?;
}
self.mut_repo.update_rewritten_references(self.settings)
}
}
pub struct MoveCommitsStats {
/// The number of commits in the target set which were rebased.
pub num_rebased_targets: u32,
/// The number of descendant commits which were rebased.
pub num_rebased_descendants: u32,
/// The number of commits for which rebase was skipped, due to the commit
/// already being in place.
pub num_skipped_rebases: u32,
/// The number of commits which were abandoned.
pub num_abandoned: u32,
}
/// Moves `target_commits` from their current location to a new location in the
/// graph.
///
/// Commits in `target_roots` are rebased onto the new parents
/// given by `new_parent_ids`, while the `new_children` commits are
/// rebased onto the heads of `target_commits`. If `target_roots` is
/// `None`, it will be computed as the roots of the connected set of
/// target commits. This assumes that `target_commits` and
/// `new_children` can be rewritten, and there will be no cycles in
/// the resulting graph. `target_commits` should be in reverse
/// topological order. `target_roots`, if provided, should be a subset
/// of `target_commits`.
pub fn move_commits(
settings: &UserSettings,
mut_repo: &mut MutableRepo,
new_parent_ids: &[CommitId],
new_children: &[Commit],
target_commits: &[Commit],
target_roots: Option<&[CommitId]>,
options: &RebaseOptions,
) -> BackendResult<MoveCommitsStats> {
if target_commits.is_empty() {
return Ok(MoveCommitsStats {
num_rebased_targets: 0,
num_rebased_descendants: 0,
num_skipped_rebases: 0,
num_abandoned: 0,
});
}
let target_commit_ids: HashSet<_> = target_commits.iter().ids().cloned().collect();
let connected_target_commits: Vec<_> =
RevsetExpression::commits(target_commits.iter().ids().cloned().collect_vec())
.connected()
.evaluate_programmatic(mut_repo)
.map_err(|err| err.expect_backend_error())?
.iter()
.commits(mut_repo.store())
.try_collect()
// TODO: Return evaluation error to caller
.map_err(|err| err.expect_backend_error())?;
// Compute the parents of all commits in the connected target set, allowing only
// commits in the target set as parents. The parents of each commit are
// identical to the ones found using a preorder DFS of the node's ancestors,
// starting from the node itself, and avoiding traversing an edge if the
// parent is in the target set.
let mut connected_target_commits_internal_parents: HashMap<CommitId, Vec<CommitId>> =
HashMap::new();
for commit in connected_target_commits.iter().rev() {
// The roots of the set will not have any parents found in
// `connected_target_commits_internal_parents`, and will be stored as an empty
// vector.
let mut new_parents = vec![];
for old_parent in commit.parent_ids() {
if target_commit_ids.contains(old_parent) {
new_parents.push(old_parent.clone());
} else if let Some(parents) = connected_target_commits_internal_parents.get(old_parent)
{
new_parents.extend(parents.iter().cloned());
}
}
connected_target_commits_internal_parents.insert(commit.id().clone(), new_parents);
}
// Compute the roots of `target_commits` if not provided.
let target_roots: HashSet<_> = if let Some(target_roots) = target_roots {
target_roots.iter().cloned().collect()
} else {
connected_target_commits_internal_parents
.iter()
.filter(|(commit_id, parents)| {
target_commit_ids.contains(commit_id) && parents.is_empty()
})
.map(|(commit_id, _)| commit_id.clone())
.collect()
};
// If a commit outside the target set has a commit in the target set as a
// parent, then - after the transformation - it should have that commit's
// ancestors which are not in the target set as parents.
let mut target_commits_external_parents: HashMap<CommitId, IndexSet<CommitId>> = HashMap::new();
for commit in target_commits.iter().rev() {
let mut new_parents = IndexSet::new();
for old_parent in commit.parent_ids() {
if let Some(parents) = target_commits_external_parents.get(old_parent) {
new_parents.extend(parents.iter().cloned());
} else {
new_parents.insert(old_parent.clone());
}
}
target_commits_external_parents.insert(commit.id().clone(), new_parents);
}
// If the new parents include a commit in the target set, replace it with the
// commit's ancestors which are outside the set.
// e.g. `jj rebase -r A --before A`
let new_parent_ids: Vec<_> = new_parent_ids
.iter()
.flat_map(|parent_id| {
if let Some(parent_ids) = target_commits_external_parents.get(parent_id) {
parent_ids.iter().cloned().collect_vec()
} else {
vec![parent_id.clone()]
}
})
.collect();
// If the new children include a commit in the target set, replace it with the
// commit's descendants which are outside the set.
// e.g. `jj rebase -r A --after A`
let new_children: Vec<_> = if new_children
.iter()
.any(|child| target_commit_ids.contains(child.id()))
{
let target_commits_descendants: Vec<_> =
RevsetExpression::commits(target_commit_ids.iter().cloned().collect_vec())
.union(
&RevsetExpression::commits(target_commit_ids.iter().cloned().collect_vec())
.children(),
)
.evaluate_programmatic(mut_repo)
.map_err(|err| err.expect_backend_error())?
.iter()
.commits(mut_repo.store())
.try_collect()
// TODO: Return evaluation error to caller
.map_err(|err| err.expect_backend_error())?;
// For all commits in the target set, compute its transitive descendant commits
// which are outside of the target set by up to 1 generation.
let mut target_commit_external_descendants: HashMap<CommitId, IndexSet<Commit>> =
HashMap::new();
// Iterate through all descendants of the target set, going through children
// before parents.
for commit in &target_commits_descendants {
if !target_commit_external_descendants.contains_key(commit.id()) {
let children = if target_commit_ids.contains(commit.id()) {
IndexSet::new()
} else {
IndexSet::from([commit.clone()])
};
target_commit_external_descendants.insert(commit.id().clone(), children);
}
let children = target_commit_external_descendants
.get(commit.id())
.unwrap()
.iter()
.cloned()
.collect_vec();
for parent_id in commit.parent_ids() {
if target_commit_ids.contains(parent_id) {
if let Some(target_children) =
target_commit_external_descendants.get_mut(parent_id)
{
target_children.extend(children.iter().cloned());
} else {
target_commit_external_descendants
.insert(parent_id.clone(), children.iter().cloned().collect());
}
};
}
}
new_children
.iter()
.flat_map(|child| {
if let Some(children) = target_commit_external_descendants.get(child.id()) {
children.iter().cloned().collect_vec()
} else {
vec![child.clone()]
}
})
.collect()
} else {
new_children.to_vec()
};
// Compute the parents of the new children, which will include the heads of the
// target set.
let new_children_parents: HashMap<_, _> = if !new_children.is_empty() {
// Compute the heads of the target set, which will be used as the parents of
// `new_children`.
let mut target_heads: HashSet<CommitId> = HashSet::new();
for commit in connected_target_commits.iter().rev() {
target_heads.insert(commit.id().clone());
for old_parent in commit.parent_ids() {
target_heads.remove(old_parent);
}
}
let target_heads = connected_target_commits
.iter()
.rev()
.filter(|commit| {
target_heads.contains(commit.id()) && target_commit_ids.contains(commit.id())
})
.map(|commit| commit.id().clone())
.collect_vec();
new_children
.iter()
.map(|child_commit| {
let mut new_child_parent_ids = IndexSet::new();
for old_child_parent_id in child_commit.parent_ids() {
// Replace target commits with their parents outside the target set.
let old_child_parent_ids = if let Some(parents) =
target_commits_external_parents.get(old_child_parent_id)
{
parents.iter().collect_vec()
} else {
vec![old_child_parent_id]
};
// If the original parents of the new children are the new parents of the
// `target_heads`, replace them with the target heads since we are "inserting"
// the target commits in between the new parents and the new children.
for id in old_child_parent_ids {
if new_parent_ids
.iter()
.any(|new_parent_id| *new_parent_id == *id)
{
new_child_parent_ids.extend(target_heads.clone());
} else {
new_child_parent_ids.insert(id.clone());
};
}
}
// If not already present, add `target_heads` as parents of the new child
// commit.
new_child_parent_ids.extend(target_heads.clone());
(
child_commit.id().clone(),
new_child_parent_ids.into_iter().collect_vec(),
)
})
.collect()
} else {
HashMap::new()
};
// Compute the set of commits to visit, which includes the target commits, the
// new children commits (if any), and their descendants.
let mut roots = target_roots.iter().cloned().collect_vec();
roots.extend(new_children.iter().ids().cloned());
let to_visit_expression = RevsetExpression::commits(roots).descendants();
let to_visit: Vec<_> = to_visit_expression
.evaluate_programmatic(mut_repo)
.map_err(|err| err.expect_backend_error())?
.iter()
.commits(mut_repo.store())
.try_collect()
// TODO: Return evaluation error to caller
.map_err(|err| err.expect_backend_error())?;
let to_visit_commits: IndexMap<_, _> = to_visit
.into_iter()
.map(|commit| (commit.id().clone(), commit))
.collect();
let to_visit_commits_new_parents: HashMap<_, _> = to_visit_commits
.iter()
.map(|(commit_id, commit)| {
let new_parents =
// New child of the rebased target commits.
if let Some(new_child_parents) = new_children_parents.get(commit_id) {
new_child_parents.clone()
}
// Commit is in the target set.
else if target_commit_ids.contains(commit_id) {
// If the commit is a root of the target set, it should be rebased onto the new destination.
if target_roots.contains(commit_id) {
new_parent_ids.clone()
}
// Otherwise:
// 1. Keep parents which are within the target set.
// 2. Replace parents which are outside the target set but are part of the
// connected target set with their ancestor commits which are in the target
// set.
// 3. Keep other parents outside the target set if they are not descendants of the
// new children of the target set.
else {
let mut new_parents = vec![];
for parent_id in commit.parent_ids() {
if target_commit_ids.contains(parent_id) {
new_parents.push(parent_id.clone());
} else if let Some(parents) =
connected_target_commits_internal_parents.get(parent_id) {
new_parents.extend(parents.iter().cloned());
} else if !new_children.iter().any(|new_child| {
mut_repo.index().is_ancestor(new_child.id(), parent_id) }) {
new_parents.push(parent_id.clone());
}
}
new_parents
}
}
// Commits outside the target set should have references to commits inside the set
// replaced.
else if commit
.parent_ids()
.iter()
.any(|id| target_commits_external_parents.contains_key(id))
{
let mut new_parents = vec![];
for parent in commit.parent_ids() {
if let Some(parents) = target_commits_external_parents.get(parent) {
new_parents.extend(parents.iter().cloned());
} else {
new_parents.push(parent.clone());
}
}
new_parents
} else {
commit.parent_ids().iter().cloned().collect_vec()
};
(commit_id.clone(), new_parents)
})
.collect();
// Re-compute the order of commits to visit, such that each commit's new parents
// must be visited first.
let mut visited: HashSet<CommitId> = HashSet::new();
let mut to_visit = dag_walk::topo_order_reverse(
to_visit_commits.keys().cloned().collect_vec(),
|commit_id| commit_id.clone(),
|commit_id| -> Vec<CommitId> {
visited.insert(commit_id.clone());
to_visit_commits_new_parents
.get(commit_id)
.cloned()
.unwrap()
.iter()
// Only add parents which are in the set to be visited and have not already been
// visited.
.filter(|&id| to_visit_commits.contains_key(id) && !visited.contains(id))
.cloned()
.collect()
},
);
let mut num_rebased_targets = 0;
let mut num_rebased_descendants = 0;
let mut num_skipped_rebases = 0;
let mut num_abandoned = 0;
// Rebase each commit onto its new parents in the reverse topological order
// computed above.
while let Some(old_commit_id) = to_visit.pop() {
let old_commit = to_visit_commits.get(&old_commit_id).unwrap();
let parent_ids = to_visit_commits_new_parents.get(&old_commit_id).unwrap();
let new_parent_ids = mut_repo.new_parents(parent_ids);
let rewriter = CommitRewriter::new(mut_repo, old_commit.clone(), new_parent_ids);
if rewriter.parents_changed() {
let rebased_commit = rebase_commit_with_options(settings, rewriter, options)?;
if let RebasedCommit::Abandoned { .. } = rebased_commit {
num_abandoned += 1;
} else if target_commit_ids.contains(&old_commit_id) {
num_rebased_targets += 1;
} else {
num_rebased_descendants += 1;
}
} else {
num_skipped_rebases += 1;
}
}
mut_repo.update_rewritten_references(settings)?;
Ok(MoveCommitsStats {
num_rebased_targets,
num_rebased_descendants,
num_skipped_rebases,
num_abandoned,
})
}
pub struct CommitToSquash {
pub commit: Commit,
pub selected_tree: MergedTree,
pub parent_tree: MergedTree,
}
impl CommitToSquash {
/// Returns true if the selection contains all changes in the commit.
fn is_full_selection(&self) -> bool {
&self.selected_tree.id() == self.commit.tree_id()
}
/// Returns true if the selection matches the parent tree (contains no
/// changes from the commit).
///
/// Both `is_full_selection()` and `is_empty_selection()`
/// can be true if the commit is itself empty.
fn is_empty_selection(&self) -> bool {
self.selected_tree.id() == self.parent_tree.id()
}
}
#[derive(Clone, Debug)]
pub enum SquashResult {
/// No inputs contained actual changes.
NoChanges,
/// Destination was rewritten.
NewCommit(Commit),
}
/// Squash `sources` into `destination` and return a CommitBuilder for the
/// resulting commit. Caller is responsible for setting the description and
/// finishing the commit.
pub fn squash_commits<E>(
settings: &UserSettings,
repo: &mut MutableRepo,
sources: &[CommitToSquash],
destination: &Commit,
keep_emptied: bool,
description_fn: impl FnOnce(&[&CommitToSquash]) -> Result<String, E>,
) -> Result<SquashResult, E>
where
E: From<BackendError>,
{
struct SourceCommit<'a> {
commit: &'a CommitToSquash,
abandon: bool,
}
let mut source_commits = vec![];
for source in sources {
let abandon = !keep_emptied && source.is_full_selection();
if !abandon && source.is_empty_selection() {
// Nothing selected from this commit. If it's abandoned (i.e. already empty), we
// still include it so `jj squash` can be used for abandoning an empty commit in
// the middle of a stack.
continue;
}
// TODO: Do we want to optimize the case of moving to the parent commit (`jj
// squash -r`)? The source tree will be unchanged in that case.
source_commits.push(SourceCommit {
commit: source,
abandon,
});
}
if source_commits.is_empty() {
return Ok(SquashResult::NoChanges);
}
let mut abandoned_commits = vec![];
for source in &source_commits {
if source.abandon {
repo.record_abandoned_commit(source.commit.commit.id().clone());
abandoned_commits.push(source.commit);
} else {
let source_tree = source.commit.commit.tree()?;
// Apply the reverse of the selected changes onto the source
let new_source_tree =
source_tree.merge(&source.commit.selected_tree, &source.commit.parent_tree)?;
repo.rewrite_commit(settings, &source.commit.commit)
.set_tree_id(new_source_tree.id().clone())
.write()?;
}
}
let mut rewritten_destination = destination.clone();
if sources.iter().any(|source| {
repo.index()
.is_ancestor(source.commit.id(), destination.id())
}) {
// If we're moving changes to a descendant, first rebase descendants onto the
// rewritten sources. Otherwise it will likely already have the content
// changes we're moving, so applying them will have no effect and the
// changes will disappear.
let rebase_map = repo.rebase_descendants_return_map(settings)?;
let rebased_destination_id = rebase_map.get(destination.id()).unwrap().clone();
rewritten_destination = repo.store().get_commit(&rebased_destination_id)?;
}
// Apply the selected changes onto the destination
let mut destination_tree = rewritten_destination.tree()?;
for source in &source_commits {
destination_tree =
destination_tree.merge(&source.commit.parent_tree, &source.commit.selected_tree)?;
}
let mut predecessors = vec![destination.id().clone()];
predecessors.extend(
source_commits
.iter()
.map(|source| source.commit.commit.id().clone()),
);
let destination = repo
.rewrite_commit(settings, &rewritten_destination)
.set_tree_id(destination_tree.id().clone())
.set_predecessors(predecessors)
.set_description(description_fn(&abandoned_commits)?)
.write()?;
Ok(SquashResult::NewCommit(destination))
}