mirror of
https://github.com/martinvonz/jj.git
synced 2025-01-16 00:56:23 +00:00
8ddad859e8
Unlike dfs_ok(), this function short-circuits at an Err as we use non-lazy topo_order_forward() internally. I think that's good enough. If we implement GC on operation log, deleted parents will be excluded (or mapped to tombstone) by caller. An Err shouldn't mean it's GC-ed.
1220 lines
40 KiB
Rust
1220 lines
40 KiB
Rust
// Copyright 2020 The Jujutsu Authors
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
//! General-purpose DAG algorithms.
|
|
|
|
use std::collections::{BinaryHeap, HashMap, HashSet};
|
|
use std::convert::Infallible;
|
|
use std::hash::Hash;
|
|
use std::{iter, mem};
|
|
|
|
use itertools::Itertools as _;
|
|
|
|
/// Traverses nodes from `start` in depth-first order.
|
|
pub fn dfs<T, ID, II, NI>(
|
|
start: II,
|
|
id_fn: impl Fn(&T) -> ID,
|
|
mut neighbors_fn: impl FnMut(&T) -> NI,
|
|
) -> impl Iterator<Item = T>
|
|
where
|
|
ID: Hash + Eq,
|
|
II: IntoIterator<Item = T>,
|
|
NI: IntoIterator<Item = T>,
|
|
{
|
|
let neighbors_fn = move |node: &T| to_ok_iter(neighbors_fn(node));
|
|
dfs_ok(to_ok_iter(start), id_fn, neighbors_fn).map(Result::unwrap)
|
|
}
|
|
|
|
/// Traverses nodes from `start` in depth-first order.
|
|
///
|
|
/// An `Err` is emitted as a node with no neighbors. Caller may decide to
|
|
/// short-circuit on it.
|
|
pub fn dfs_ok<T, ID, E, II, NI>(
|
|
start: II,
|
|
id_fn: impl Fn(&T) -> ID,
|
|
mut neighbors_fn: impl FnMut(&T) -> NI,
|
|
) -> impl Iterator<Item = Result<T, E>>
|
|
where
|
|
ID: Hash + Eq,
|
|
II: IntoIterator<Item = Result<T, E>>,
|
|
NI: IntoIterator<Item = Result<T, E>>,
|
|
{
|
|
let mut work: Vec<Result<T, E>> = start.into_iter().collect();
|
|
let mut visited: HashSet<ID> = HashSet::new();
|
|
iter::from_fn(move || loop {
|
|
let c = match work.pop() {
|
|
Some(Ok(c)) => c,
|
|
r @ (Some(Err(_)) | None) => return r,
|
|
};
|
|
let id = id_fn(&c);
|
|
if visited.contains(&id) {
|
|
continue;
|
|
}
|
|
for p in neighbors_fn(&c) {
|
|
work.push(p);
|
|
}
|
|
visited.insert(id);
|
|
return Some(Ok(c));
|
|
})
|
|
}
|
|
|
|
/// Builds a list of nodes reachable from the `start` where neighbors come
|
|
/// before the node itself.
|
|
pub fn topo_order_forward<T, ID, II, NI>(
|
|
start: II,
|
|
id_fn: impl Fn(&T) -> ID,
|
|
mut neighbors_fn: impl FnMut(&T) -> NI,
|
|
) -> Vec<T>
|
|
where
|
|
ID: Hash + Eq + Clone,
|
|
II: IntoIterator<Item = T>,
|
|
NI: IntoIterator<Item = T>,
|
|
{
|
|
let neighbors_fn = move |node: &T| to_ok_iter(neighbors_fn(node));
|
|
topo_order_forward_ok(to_ok_iter(start), id_fn, neighbors_fn).unwrap()
|
|
}
|
|
|
|
/// Builds a list of `Ok` nodes reachable from the `start` where neighbors come
|
|
/// before the node itself.
|
|
///
|
|
/// If `start` or `neighbors_fn()` yields an `Err`, this function terminates and
|
|
/// returns the error.
|
|
pub fn topo_order_forward_ok<T, ID, E, II, NI>(
|
|
start: II,
|
|
id_fn: impl Fn(&T) -> ID,
|
|
mut neighbors_fn: impl FnMut(&T) -> NI,
|
|
) -> Result<Vec<T>, E>
|
|
where
|
|
ID: Hash + Eq + Clone,
|
|
II: IntoIterator<Item = Result<T, E>>,
|
|
NI: IntoIterator<Item = Result<T, E>>,
|
|
{
|
|
let mut stack: Vec<(T, bool)> = start.into_iter().map(|r| Ok((r?, false))).try_collect()?;
|
|
let mut visiting = HashSet::new();
|
|
let mut emitted = HashSet::new();
|
|
let mut result = vec![];
|
|
while let Some((node, neighbors_visited)) = stack.pop() {
|
|
let id = id_fn(&node);
|
|
if emitted.contains(&id) {
|
|
continue;
|
|
}
|
|
if !neighbors_visited {
|
|
assert!(visiting.insert(id.clone()), "graph has cycle");
|
|
let neighbors_iter = neighbors_fn(&node).into_iter();
|
|
stack.reserve(neighbors_iter.size_hint().0 + 1);
|
|
stack.push((node, true));
|
|
for neighbor in neighbors_iter {
|
|
stack.push((neighbor?, false));
|
|
}
|
|
} else {
|
|
visiting.remove(&id);
|
|
emitted.insert(id);
|
|
result.push(node);
|
|
}
|
|
}
|
|
Ok(result)
|
|
}
|
|
|
|
/// Builds a list of nodes reachable from the `start` where neighbors come after
|
|
/// the node itself.
|
|
pub fn topo_order_reverse<T, ID, II, NI>(
|
|
start: II,
|
|
id_fn: impl Fn(&T) -> ID,
|
|
mut neighbors_fn: impl FnMut(&T) -> NI,
|
|
) -> Vec<T>
|
|
where
|
|
ID: Hash + Eq + Clone,
|
|
II: IntoIterator<Item = T>,
|
|
NI: IntoIterator<Item = T>,
|
|
{
|
|
let neighbors_fn = move |node: &T| to_ok_iter(neighbors_fn(node));
|
|
topo_order_reverse_ok(to_ok_iter(start), id_fn, neighbors_fn).unwrap()
|
|
}
|
|
|
|
/// Builds a list of `Ok` nodes reachable from the `start` where neighbors come
|
|
/// after the node itself.
|
|
///
|
|
/// If `start` or `neighbors_fn()` yields an `Err`, this function terminates and
|
|
/// returns the error.
|
|
pub fn topo_order_reverse_ok<T, ID, E, II, NI>(
|
|
start: II,
|
|
id_fn: impl Fn(&T) -> ID,
|
|
neighbors_fn: impl FnMut(&T) -> NI,
|
|
) -> Result<Vec<T>, E>
|
|
where
|
|
ID: Hash + Eq + Clone,
|
|
II: IntoIterator<Item = Result<T, E>>,
|
|
NI: IntoIterator<Item = Result<T, E>>,
|
|
{
|
|
let mut result = topo_order_forward_ok(start, id_fn, neighbors_fn)?;
|
|
result.reverse();
|
|
Ok(result)
|
|
}
|
|
|
|
/// Like `topo_order_reverse()`, but can iterate linear DAG lazily.
|
|
///
|
|
/// The DAG is supposed to be (mostly) topologically ordered by `T: Ord`.
|
|
/// For example, topological order of chronological data should respect
|
|
/// timestamp (except a few outliers caused by clock skew.)
|
|
///
|
|
/// Use `topo_order_reverse()` if the DAG is heavily branched. This can
|
|
/// only process linear part lazily.
|
|
pub fn topo_order_reverse_lazy<T, ID, II, NI>(
|
|
start: II,
|
|
id_fn: impl Fn(&T) -> ID,
|
|
mut neighbors_fn: impl FnMut(&T) -> NI,
|
|
) -> impl Iterator<Item = T>
|
|
where
|
|
T: Ord,
|
|
ID: Hash + Eq + Clone,
|
|
II: IntoIterator<Item = T>,
|
|
NI: IntoIterator<Item = T>,
|
|
{
|
|
let neighbors_fn = move |node: &T| to_ok_iter(neighbors_fn(node));
|
|
topo_order_reverse_lazy_ok(to_ok_iter(start), id_fn, neighbors_fn).map(Result::unwrap)
|
|
}
|
|
|
|
/// Like `topo_order_reverse_ok()`, but can iterate linear DAG lazily.
|
|
///
|
|
/// The returned iterator short-circuits at an `Err`. Pending non-linear nodes
|
|
/// before the `Err` will be discarded.
|
|
pub fn topo_order_reverse_lazy_ok<T, ID, E, II, NI>(
|
|
start: II,
|
|
id_fn: impl Fn(&T) -> ID,
|
|
mut neighbors_fn: impl FnMut(&T) -> NI,
|
|
) -> impl Iterator<Item = Result<T, E>>
|
|
where
|
|
T: Ord,
|
|
ID: Hash + Eq + Clone,
|
|
II: IntoIterator<Item = Result<T, E>>,
|
|
NI: IntoIterator<Item = Result<T, E>>,
|
|
{
|
|
let mut inner = TopoOrderReverseLazyInner::empty();
|
|
inner.extend(start);
|
|
iter::from_fn(move || inner.next(&id_fn, &mut neighbors_fn))
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
struct TopoOrderReverseLazyInner<T, ID, E> {
|
|
start: Vec<T>,
|
|
result: Vec<Result<T, E>>,
|
|
emitted: HashSet<ID>,
|
|
}
|
|
|
|
impl<T: Ord, ID: Hash + Eq + Clone, E> TopoOrderReverseLazyInner<T, ID, E> {
|
|
fn empty() -> Self {
|
|
TopoOrderReverseLazyInner {
|
|
start: Vec::new(),
|
|
result: Vec::new(),
|
|
emitted: HashSet::new(),
|
|
}
|
|
}
|
|
|
|
fn extend(&mut self, iter: impl IntoIterator<Item = Result<T, E>>) {
|
|
let iter = iter.into_iter();
|
|
self.start.reserve(iter.size_hint().0);
|
|
for res in iter {
|
|
if let Ok(node) = res {
|
|
self.start.push(node);
|
|
} else {
|
|
// Emit the error and terminate
|
|
self.start.clear();
|
|
self.result.insert(0, res);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn next<NI: IntoIterator<Item = Result<T, E>>>(
|
|
&mut self,
|
|
id_fn: impl Fn(&T) -> ID,
|
|
mut neighbors_fn: impl FnMut(&T) -> NI,
|
|
) -> Option<Result<T, E>> {
|
|
if let Some(res) = self.result.pop() {
|
|
return Some(res);
|
|
}
|
|
|
|
// Fast path for linear DAG
|
|
if self.start.len() <= 1 {
|
|
let node = self.start.pop()?;
|
|
self.extend(neighbors_fn(&node));
|
|
assert!(self.emitted.insert(id_fn(&node)), "graph has cycle");
|
|
return Some(Ok(node));
|
|
}
|
|
|
|
// Extract graph nodes based on T's order, and sort them by using ids
|
|
// (because we wouldn't want to clone T itself)
|
|
let start_ids = self.start.iter().map(&id_fn).collect_vec();
|
|
match look_ahead_sub_graph(mem::take(&mut self.start), &id_fn, &mut neighbors_fn) {
|
|
Ok((mut node_map, neighbor_ids_map, remainder)) => {
|
|
self.start = remainder;
|
|
let sorted_ids =
|
|
topo_order_forward(&start_ids, |id| *id, |id| &neighbor_ids_map[id]);
|
|
self.result.reserve(sorted_ids.len());
|
|
for id in sorted_ids {
|
|
let (id, node) = node_map.remove_entry(id).unwrap();
|
|
assert!(self.emitted.insert(id), "graph has cycle");
|
|
self.result.push(Ok(node));
|
|
}
|
|
self.result.pop()
|
|
}
|
|
Err(err) => Some(Err(err)),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Splits DAG at single fork point, and extracts branchy part as sub graph.
|
|
///
|
|
/// ```text
|
|
/// o | C
|
|
/// | o B
|
|
/// |/ <---- split here (A->B or A->C would create cycle)
|
|
/// o A
|
|
/// ```
|
|
///
|
|
/// If a branch reached to root (empty neighbors), the graph can't be split
|
|
/// anymore because the other branch may be connected to a descendant of
|
|
/// the rooted branch.
|
|
///
|
|
/// ```text
|
|
/// o | C
|
|
/// | o B
|
|
/// | <---- can't split here (there may be edge A->B)
|
|
/// o A
|
|
/// ```
|
|
///
|
|
/// We assume the graph is (mostly) topologically ordered by `T: Ord`.
|
|
#[allow(clippy::type_complexity)]
|
|
fn look_ahead_sub_graph<T, ID, E, NI>(
|
|
start: Vec<T>,
|
|
id_fn: impl Fn(&T) -> ID,
|
|
mut neighbors_fn: impl FnMut(&T) -> NI,
|
|
) -> Result<(HashMap<ID, T>, HashMap<ID, Vec<ID>>, Vec<T>), E>
|
|
where
|
|
T: Ord,
|
|
ID: Hash + Eq + Clone,
|
|
NI: IntoIterator<Item = Result<T, E>>,
|
|
{
|
|
let mut queue: BinaryHeap<T> = start.into();
|
|
// Build separate node/neighbors maps since lifetime is different at caller
|
|
let mut node_map: HashMap<ID, T> = HashMap::new();
|
|
let mut neighbor_ids_map: HashMap<ID, Vec<ID>> = HashMap::new();
|
|
let mut has_reached_root = false;
|
|
while queue.len() > 1 || node_map.is_empty() || has_reached_root {
|
|
let Some(node) = queue.pop() else {
|
|
break;
|
|
};
|
|
let node_id = id_fn(&node);
|
|
if node_map.contains_key(&node_id) {
|
|
continue;
|
|
}
|
|
|
|
let mut neighbor_ids = Vec::new();
|
|
let mut neighbors_iter = neighbors_fn(&node).into_iter().peekable();
|
|
has_reached_root |= neighbors_iter.peek().is_none();
|
|
for neighbor in neighbors_iter {
|
|
let neighbor = neighbor?;
|
|
neighbor_ids.push(id_fn(&neighbor));
|
|
queue.push(neighbor);
|
|
}
|
|
node_map.insert(node_id.clone(), node);
|
|
neighbor_ids_map.insert(node_id, neighbor_ids);
|
|
}
|
|
|
|
assert!(queue.len() <= 1, "order of remainder shouldn't matter");
|
|
let remainder = queue.into_vec();
|
|
|
|
// Omit unvisited neighbors
|
|
if let Some(unvisited_id) = remainder.first().map(&id_fn) {
|
|
for neighbor_ids in neighbor_ids_map.values_mut() {
|
|
neighbor_ids.retain(|id| *id != unvisited_id);
|
|
}
|
|
}
|
|
|
|
Ok((node_map, neighbor_ids_map, remainder))
|
|
}
|
|
|
|
/// Builds a list of nodes reachable from the `start` where neighbors come after
|
|
/// the node itself.
|
|
///
|
|
/// Unlike `topo_order_reverse()`, nodes are sorted in reverse `T: Ord` order so
|
|
/// long as they can respect the topological requirement.
|
|
pub fn topo_order_reverse_ord<T, ID, II, NI>(
|
|
start: II,
|
|
id_fn: impl Fn(&T) -> ID,
|
|
mut neighbors_fn: impl FnMut(&T) -> NI,
|
|
) -> Vec<T>
|
|
where
|
|
T: Ord,
|
|
ID: Hash + Eq + Clone,
|
|
II: IntoIterator<Item = T>,
|
|
NI: IntoIterator<Item = T>,
|
|
{
|
|
let neighbors_fn = move |node: &T| to_ok_iter(neighbors_fn(node));
|
|
topo_order_reverse_ord_ok(to_ok_iter(start), id_fn, neighbors_fn).unwrap()
|
|
}
|
|
|
|
/// Builds a list of `Ok` nodes reachable from the `start` where neighbors come
|
|
/// after the node itself.
|
|
///
|
|
/// Unlike `topo_order_reverse_ok()`, nodes are sorted in reverse `T: Ord` order
|
|
/// so long as they can respect the topological requirement.
|
|
///
|
|
/// If `start` or `neighbors_fn()` yields an `Err`, this function terminates and
|
|
/// returns the error.
|
|
pub fn topo_order_reverse_ord_ok<T, ID, E, II, NI>(
|
|
start: II,
|
|
id_fn: impl Fn(&T) -> ID,
|
|
mut neighbors_fn: impl FnMut(&T) -> NI,
|
|
) -> Result<Vec<T>, E>
|
|
where
|
|
T: Ord,
|
|
ID: Hash + Eq + Clone,
|
|
II: IntoIterator<Item = Result<T, E>>,
|
|
NI: IntoIterator<Item = Result<T, E>>,
|
|
{
|
|
struct InnerNode<T> {
|
|
node: Option<T>,
|
|
indegree: usize,
|
|
}
|
|
|
|
// DFS to accumulate incoming edges
|
|
let mut stack: Vec<T> = start.into_iter().try_collect()?;
|
|
let mut head_node_map: HashMap<ID, T> = HashMap::new();
|
|
let mut inner_node_map: HashMap<ID, InnerNode<T>> = HashMap::new();
|
|
let mut neighbor_ids_map: HashMap<ID, Vec<ID>> = HashMap::new();
|
|
while let Some(node) = stack.pop() {
|
|
let node_id = id_fn(&node);
|
|
if neighbor_ids_map.contains_key(&node_id) {
|
|
continue; // Already visited
|
|
}
|
|
|
|
let neighbors_iter = neighbors_fn(&node).into_iter();
|
|
let pos = stack.len();
|
|
stack.reserve(neighbors_iter.size_hint().0);
|
|
for neighbor in neighbors_iter {
|
|
stack.push(neighbor?);
|
|
}
|
|
let neighbor_ids = stack[pos..].iter().map(&id_fn).collect_vec();
|
|
if let Some(inner) = inner_node_map.get_mut(&node_id) {
|
|
inner.node = Some(node);
|
|
} else {
|
|
head_node_map.insert(node_id.clone(), node);
|
|
}
|
|
|
|
for neighbor_id in &neighbor_ids {
|
|
if let Some(inner) = inner_node_map.get_mut(neighbor_id) {
|
|
inner.indegree += 1;
|
|
} else {
|
|
let inner = InnerNode {
|
|
node: head_node_map.remove(neighbor_id),
|
|
indegree: 1,
|
|
};
|
|
inner_node_map.insert(neighbor_id.clone(), inner);
|
|
}
|
|
}
|
|
neighbor_ids_map.insert(node_id, neighbor_ids);
|
|
}
|
|
|
|
debug_assert!(head_node_map
|
|
.keys()
|
|
.all(|id| !inner_node_map.contains_key(id)));
|
|
debug_assert!(inner_node_map.values().all(|inner| inner.node.is_some()));
|
|
debug_assert!(inner_node_map.values().all(|inner| inner.indegree > 0));
|
|
|
|
// Using Kahn's algorithm
|
|
let mut queue: BinaryHeap<T> = head_node_map.into_values().collect();
|
|
let mut result = Vec::new();
|
|
while let Some(node) = queue.pop() {
|
|
let node_id = id_fn(&node);
|
|
result.push(node);
|
|
for neighbor_id in neighbor_ids_map.remove(&node_id).unwrap() {
|
|
let inner = inner_node_map.get_mut(&neighbor_id).unwrap();
|
|
inner.indegree -= 1;
|
|
if inner.indegree == 0 {
|
|
queue.push(inner.node.take().unwrap());
|
|
inner_node_map.remove(&neighbor_id);
|
|
}
|
|
}
|
|
}
|
|
|
|
assert!(inner_node_map.is_empty(), "graph has cycle");
|
|
Ok(result)
|
|
}
|
|
|
|
/// Find nodes in the start set that are not reachable from other nodes in the
|
|
/// start set.
|
|
pub fn heads<T, ID, II, NI>(
|
|
start: II,
|
|
id_fn: impl Fn(&T) -> ID,
|
|
mut neighbors_fn: impl FnMut(&T) -> NI,
|
|
) -> HashSet<T>
|
|
where
|
|
T: Hash + Eq + Clone,
|
|
ID: Hash + Eq,
|
|
II: IntoIterator<Item = T>,
|
|
NI: IntoIterator<Item = T>,
|
|
{
|
|
let neighbors_fn = move |node: &T| to_ok_iter(neighbors_fn(node));
|
|
heads_ok(to_ok_iter(start), id_fn, neighbors_fn).unwrap()
|
|
}
|
|
|
|
/// Finds `Ok` nodes in the start set that are not reachable from other nodes in
|
|
/// the start set.
|
|
///
|
|
/// If `start` or `neighbors_fn()` yields an `Err`, this function terminates and
|
|
/// returns the error.
|
|
pub fn heads_ok<T, ID, E, II, NI>(
|
|
start: II,
|
|
id_fn: impl Fn(&T) -> ID,
|
|
mut neighbors_fn: impl FnMut(&T) -> NI,
|
|
) -> Result<HashSet<T>, E>
|
|
where
|
|
T: Hash + Eq + Clone,
|
|
ID: Hash + Eq,
|
|
II: IntoIterator<Item = Result<T, E>>,
|
|
NI: IntoIterator<Item = Result<T, E>>,
|
|
{
|
|
let start: Vec<T> = start.into_iter().try_collect()?;
|
|
let mut reachable: HashSet<T> = start.iter().cloned().collect();
|
|
dfs_ok(start.into_iter().map(Ok), id_fn, |node| {
|
|
let neighbors: Vec<Result<T, E>> = neighbors_fn(node).into_iter().collect();
|
|
for neighbor in neighbors.iter().filter_map(|x| x.as_ref().ok()) {
|
|
reachable.remove(neighbor);
|
|
}
|
|
neighbors
|
|
})
|
|
.try_for_each(|r| r.map(|_| ()))?;
|
|
Ok(reachable)
|
|
}
|
|
|
|
/// Finds the closest common neighbor among the `set1` and `set2`.
|
|
pub fn closest_common_node<T, ID, II1, II2, NI>(
|
|
set1: II1,
|
|
set2: II2,
|
|
id_fn: impl Fn(&T) -> ID,
|
|
mut neighbors_fn: impl FnMut(&T) -> NI,
|
|
) -> Option<T>
|
|
where
|
|
ID: Hash + Eq,
|
|
II1: IntoIterator<Item = T>,
|
|
II2: IntoIterator<Item = T>,
|
|
NI: IntoIterator<Item = T>,
|
|
{
|
|
let neighbors_fn = move |node: &T| to_ok_iter(neighbors_fn(node));
|
|
closest_common_node_ok(to_ok_iter(set1), to_ok_iter(set2), id_fn, neighbors_fn).unwrap()
|
|
}
|
|
|
|
/// Finds the closest common `Ok` neighbor among the `set1` and `set2`.
|
|
///
|
|
/// If the traverse reached to an `Err`, this function terminates and returns
|
|
/// the error.
|
|
pub fn closest_common_node_ok<T, ID, E, II1, II2, NI>(
|
|
set1: II1,
|
|
set2: II2,
|
|
id_fn: impl Fn(&T) -> ID,
|
|
mut neighbors_fn: impl FnMut(&T) -> NI,
|
|
) -> Result<Option<T>, E>
|
|
where
|
|
ID: Hash + Eq,
|
|
II1: IntoIterator<Item = Result<T, E>>,
|
|
II2: IntoIterator<Item = Result<T, E>>,
|
|
NI: IntoIterator<Item = Result<T, E>>,
|
|
{
|
|
let mut visited1 = HashSet::new();
|
|
let mut visited2 = HashSet::new();
|
|
|
|
// TODO: might be better to leave an Err so long as the work contains at
|
|
// least one Ok node. If a work1 node is included in visited2, it should be
|
|
// the closest node even if work2 had previously contained an Err.
|
|
let mut work1: Vec<Result<T, E>> = set1.into_iter().collect();
|
|
let mut work2: Vec<Result<T, E>> = set2.into_iter().collect();
|
|
while !work1.is_empty() || !work2.is_empty() {
|
|
let mut new_work1 = vec![];
|
|
for node in work1 {
|
|
let node = node?;
|
|
let id: ID = id_fn(&node);
|
|
if visited2.contains(&id) {
|
|
return Ok(Some(node));
|
|
}
|
|
if visited1.insert(id) {
|
|
for neighbor in neighbors_fn(&node) {
|
|
new_work1.push(neighbor);
|
|
}
|
|
}
|
|
}
|
|
work1 = new_work1;
|
|
|
|
let mut new_work2 = vec![];
|
|
for node in work2 {
|
|
let node = node?;
|
|
let id: ID = id_fn(&node);
|
|
if visited1.contains(&id) {
|
|
return Ok(Some(node));
|
|
}
|
|
if visited2.insert(id) {
|
|
for neighbor in neighbors_fn(&node) {
|
|
new_work2.push(neighbor);
|
|
}
|
|
}
|
|
}
|
|
work2 = new_work2;
|
|
}
|
|
Ok(None)
|
|
}
|
|
|
|
fn to_ok_iter<T>(iter: impl IntoIterator<Item = T>) -> impl Iterator<Item = Result<T, Infallible>> {
|
|
iter.into_iter().map(Ok)
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use std::panic;
|
|
|
|
use maplit::{hashmap, hashset};
|
|
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn test_dfs_ok() {
|
|
let neighbors = hashmap! {
|
|
'A' => vec![],
|
|
'B' => vec![Ok('A'), Err('X')],
|
|
'C' => vec![Ok('B')],
|
|
};
|
|
let id_fn = |node: &char| *node;
|
|
let neighbors_fn = |node: &char| neighbors[node].clone();
|
|
|
|
// Self and neighbor nodes shouldn't be lost at the error.
|
|
let nodes = dfs_ok([Ok('C')], id_fn, neighbors_fn).collect_vec();
|
|
assert_eq!(nodes, [Ok('C'), Ok('B'), Err('X'), Ok('A')]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_topo_order_reverse_linear() {
|
|
// This graph:
|
|
// o C
|
|
// o B
|
|
// o A
|
|
|
|
let neighbors = hashmap! {
|
|
'A' => vec![],
|
|
'B' => vec!['A'],
|
|
'C' => vec!['B'],
|
|
};
|
|
let id_fn = |node: &char| *node;
|
|
let neighbors_fn = |node: &char| neighbors[node].clone();
|
|
|
|
let common = topo_order_reverse(vec!['C'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['C', 'B', 'A']);
|
|
let common = topo_order_reverse(vec!['C', 'B'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['C', 'B', 'A']);
|
|
let common = topo_order_reverse(vec!['B', 'C'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['C', 'B', 'A']);
|
|
|
|
let common = topo_order_reverse_lazy(vec!['C'], id_fn, neighbors_fn).collect_vec();
|
|
assert_eq!(common, vec!['C', 'B', 'A']);
|
|
let common = topo_order_reverse_lazy(vec!['C', 'B'], id_fn, neighbors_fn).collect_vec();
|
|
assert_eq!(common, vec!['C', 'B', 'A']);
|
|
let common = topo_order_reverse_lazy(vec!['B', 'C'], id_fn, neighbors_fn).collect_vec();
|
|
assert_eq!(common, vec!['C', 'B', 'A']);
|
|
|
|
let common = topo_order_reverse_ord(vec!['C'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['C', 'B', 'A']);
|
|
let common = topo_order_reverse_ord(vec!['C', 'B'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['C', 'B', 'A']);
|
|
let common = topo_order_reverse_ord(vec!['B', 'C'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['C', 'B', 'A']);
|
|
}
|
|
|
|
#[test]
|
|
fn test_topo_order_reverse_merge() {
|
|
// This graph:
|
|
// o F
|
|
// |\
|
|
// o | E
|
|
// | o D
|
|
// | o C
|
|
// | o B
|
|
// |/
|
|
// o A
|
|
|
|
let neighbors = hashmap! {
|
|
'A' => vec![],
|
|
'B' => vec!['A'],
|
|
'C' => vec!['B'],
|
|
'D' => vec!['C'],
|
|
'E' => vec!['A'],
|
|
'F' => vec!['E', 'D'],
|
|
};
|
|
let id_fn = |node: &char| *node;
|
|
let neighbors_fn = |node: &char| neighbors[node].clone();
|
|
|
|
let common = topo_order_reverse(vec!['F'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['F', 'E', 'D', 'C', 'B', 'A']);
|
|
let common = topo_order_reverse(vec!['F', 'E', 'C'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['F', 'D', 'E', 'C', 'B', 'A']);
|
|
let common = topo_order_reverse(vec!['F', 'D', 'E'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['F', 'D', 'C', 'B', 'E', 'A']);
|
|
|
|
let common = topo_order_reverse_lazy(vec!['F'], id_fn, neighbors_fn).collect_vec();
|
|
assert_eq!(common, vec!['F', 'E', 'D', 'C', 'B', 'A']);
|
|
let common =
|
|
topo_order_reverse_lazy(vec!['F', 'E', 'C'], id_fn, neighbors_fn).collect_vec();
|
|
assert_eq!(common, vec!['F', 'D', 'E', 'C', 'B', 'A']);
|
|
let common =
|
|
topo_order_reverse_lazy(vec!['F', 'D', 'E'], id_fn, neighbors_fn).collect_vec();
|
|
assert_eq!(common, vec!['F', 'D', 'C', 'B', 'E', 'A']);
|
|
|
|
let common = topo_order_reverse_ord(vec!['F'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['F', 'E', 'D', 'C', 'B', 'A']);
|
|
let common = topo_order_reverse_ord(vec!['F', 'E', 'C'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['F', 'E', 'D', 'C', 'B', 'A']);
|
|
let common = topo_order_reverse_ord(vec!['F', 'D', 'E'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['F', 'E', 'D', 'C', 'B', 'A']);
|
|
}
|
|
|
|
#[test]
|
|
fn test_topo_order_reverse_nested_merges() {
|
|
// This graph:
|
|
// o I
|
|
// |\
|
|
// | o H
|
|
// | |\
|
|
// | | o G
|
|
// | o | F
|
|
// | | o E
|
|
// o |/ D
|
|
// | o C
|
|
// o | B
|
|
// |/
|
|
// o A
|
|
|
|
let neighbors = hashmap! {
|
|
'A' => vec![],
|
|
'B' => vec!['A'],
|
|
'C' => vec!['A'],
|
|
'D' => vec!['B'],
|
|
'E' => vec!['C'],
|
|
'F' => vec!['C'],
|
|
'G' => vec!['E'],
|
|
'H' => vec!['F', 'G'],
|
|
'I' => vec!['D', 'H'],
|
|
};
|
|
let id_fn = |node: &char| *node;
|
|
let neighbors_fn = |node: &char| neighbors[node].clone();
|
|
|
|
let common = topo_order_reverse(vec!['I'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['I', 'D', 'B', 'H', 'F', 'G', 'E', 'C', 'A']);
|
|
|
|
let common = topo_order_reverse_lazy(vec!['I'], id_fn, neighbors_fn).collect_vec();
|
|
assert_eq!(common, vec!['I', 'D', 'B', 'H', 'F', 'G', 'E', 'C', 'A']);
|
|
|
|
let common = topo_order_reverse_ord(vec!['I'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['I', 'H', 'G', 'F', 'E', 'D', 'C', 'B', 'A']);
|
|
}
|
|
|
|
#[test]
|
|
fn test_topo_order_reverse_nested_merges_bad_order() {
|
|
// This graph:
|
|
// o I
|
|
// |\
|
|
// | |\
|
|
// | | |\
|
|
// | | | o h (h > I)
|
|
// | | |/|
|
|
// | | o | G
|
|
// | |/| o f
|
|
// | o |/ e (e > I, G)
|
|
// |/| o D
|
|
// o |/ C
|
|
// | o b (b > D)
|
|
// |/
|
|
// o A
|
|
|
|
let neighbors = hashmap! {
|
|
'A' => vec![],
|
|
'b' => vec!['A'],
|
|
'C' => vec!['A'],
|
|
'D' => vec!['b'],
|
|
'e' => vec!['C', 'b'],
|
|
'f' => vec!['D'],
|
|
'G' => vec!['e', 'D'],
|
|
'h' => vec!['G', 'f'],
|
|
'I' => vec!['C', 'e', 'G', 'h'],
|
|
};
|
|
let id_fn = |node: &char| *node;
|
|
let neighbors_fn = |node: &char| neighbors[node].clone();
|
|
|
|
let common = topo_order_reverse(vec!['I'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['I', 'h', 'G', 'e', 'C', 'f', 'D', 'b', 'A']);
|
|
|
|
let common = topo_order_reverse_lazy(vec!['I'], id_fn, neighbors_fn).collect_vec();
|
|
assert_eq!(common, vec!['I', 'h', 'G', 'e', 'C', 'f', 'D', 'b', 'A']);
|
|
|
|
let common = topo_order_reverse_ord(vec!['I'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['I', 'h', 'f', 'G', 'e', 'D', 'b', 'C', 'A']);
|
|
}
|
|
|
|
#[test]
|
|
fn test_topo_order_reverse_merge_bad_fork_order_at_root() {
|
|
// This graph:
|
|
// o E
|
|
// |\
|
|
// o | D
|
|
// | o C
|
|
// | o B
|
|
// |/
|
|
// o a (a > D, B)
|
|
|
|
let neighbors = hashmap! {
|
|
'a' => vec![],
|
|
'B' => vec!['a'],
|
|
'C' => vec!['B'],
|
|
'D' => vec!['a'],
|
|
'E' => vec!['D', 'C'],
|
|
};
|
|
let id_fn = |node: &char| *node;
|
|
let neighbors_fn = |node: &char| neighbors[node].clone();
|
|
|
|
let common = topo_order_reverse(vec!['E'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['E', 'D', 'C', 'B', 'a']);
|
|
|
|
// The root node 'a' is visited before 'C'. If the graph were split there,
|
|
// the branch 'C->B->a' would be orphaned.
|
|
let common = topo_order_reverse_lazy(vec!['E'], id_fn, neighbors_fn).collect_vec();
|
|
assert_eq!(common, vec!['E', 'D', 'C', 'B', 'a']);
|
|
|
|
let common = topo_order_reverse_ord(vec!['E'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['E', 'D', 'C', 'B', 'a']);
|
|
}
|
|
|
|
#[test]
|
|
fn test_topo_order_reverse_merge_and_linear() {
|
|
// This graph:
|
|
// o G
|
|
// |\
|
|
// | o F
|
|
// o | E
|
|
// | o D
|
|
// |/
|
|
// o C
|
|
// o B
|
|
// o A
|
|
|
|
let neighbors = hashmap! {
|
|
'A' => vec![],
|
|
'B' => vec!['A'],
|
|
'C' => vec!['B'],
|
|
'D' => vec!['C'],
|
|
'E' => vec!['C'],
|
|
'F' => vec!['D'],
|
|
'G' => vec!['E', 'F'],
|
|
};
|
|
let id_fn = |node: &char| *node;
|
|
let neighbors_fn = |node: &char| neighbors[node].clone();
|
|
|
|
let common = topo_order_reverse(vec!['G'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['G', 'E', 'F', 'D', 'C', 'B', 'A']);
|
|
|
|
let common = topo_order_reverse_lazy(vec!['G'], id_fn, neighbors_fn).collect_vec();
|
|
assert_eq!(common, vec!['G', 'E', 'F', 'D', 'C', 'B', 'A']);
|
|
|
|
let common = topo_order_reverse_ord(vec!['G'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['G', 'F', 'E', 'D', 'C', 'B', 'A']);
|
|
|
|
// Iterator can be lazy for linear chunks.
|
|
let neighbors_fn = |node: &char| to_ok_iter(neighbors[node].iter().copied());
|
|
let mut inner_iter = TopoOrderReverseLazyInner::empty();
|
|
inner_iter.extend([Ok('G')]);
|
|
assert_eq!(inner_iter.next(id_fn, neighbors_fn), Some(Ok('G')));
|
|
assert!(!inner_iter.start.is_empty());
|
|
assert!(inner_iter.result.is_empty());
|
|
assert_eq!(
|
|
iter::from_fn(|| inner_iter.next(id_fn, neighbors_fn))
|
|
.take(4)
|
|
.collect_vec(),
|
|
['E', 'F', 'D', 'C'].map(Ok),
|
|
);
|
|
assert!(!inner_iter.start.is_empty());
|
|
assert!(inner_iter.result.is_empty());
|
|
}
|
|
|
|
#[test]
|
|
fn test_topo_order_reverse_merge_and_linear_bad_fork_order() {
|
|
// This graph:
|
|
// o G
|
|
// |\
|
|
// o | F
|
|
// o | E
|
|
// | o D
|
|
// |/
|
|
// o c (c > E, D)
|
|
// o B
|
|
// o A
|
|
|
|
let neighbors = hashmap! {
|
|
'A' => vec![],
|
|
'B' => vec!['A'],
|
|
'c' => vec!['B'],
|
|
'D' => vec!['c'],
|
|
'E' => vec!['c'],
|
|
'F' => vec!['E'],
|
|
'G' => vec!['F', 'D'],
|
|
};
|
|
let id_fn = |node: &char| *node;
|
|
let neighbors_fn = |node: &char| neighbors[node].clone();
|
|
|
|
let common = topo_order_reverse(vec!['G'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['G', 'F', 'E', 'D', 'c', 'B', 'A']);
|
|
|
|
let common = topo_order_reverse_lazy(vec!['G'], id_fn, neighbors_fn).collect_vec();
|
|
assert_eq!(common, vec!['G', 'F', 'E', 'D', 'c', 'B', 'A']);
|
|
|
|
let common = topo_order_reverse_ord(vec!['G'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['G', 'F', 'E', 'D', 'c', 'B', 'A']);
|
|
|
|
// Iterator can be lazy for linear chunks. The node 'c' is visited before 'D',
|
|
// but it will be processed lazily.
|
|
let neighbors_fn = |node: &char| to_ok_iter(neighbors[node].iter().copied());
|
|
let mut inner_iter = TopoOrderReverseLazyInner::empty();
|
|
inner_iter.extend([Ok('G')]);
|
|
assert_eq!(inner_iter.next(id_fn, neighbors_fn), Some(Ok('G')));
|
|
assert!(!inner_iter.start.is_empty());
|
|
assert!(inner_iter.result.is_empty());
|
|
assert_eq!(
|
|
iter::from_fn(|| inner_iter.next(id_fn, neighbors_fn))
|
|
.take(4)
|
|
.collect_vec(),
|
|
['F', 'E', 'D', 'c'].map(Ok),
|
|
);
|
|
assert!(!inner_iter.start.is_empty());
|
|
assert!(inner_iter.result.is_empty());
|
|
}
|
|
|
|
#[test]
|
|
fn test_topo_order_reverse_merge_and_linear_bad_merge_order() {
|
|
// This graph:
|
|
// o G
|
|
// |\
|
|
// o | f (f > G)
|
|
// o | e
|
|
// | o d (d > G)
|
|
// |/
|
|
// o C
|
|
// o B
|
|
// o A
|
|
|
|
let neighbors = hashmap! {
|
|
'A' => vec![],
|
|
'B' => vec!['A'],
|
|
'C' => vec!['B'],
|
|
'd' => vec!['C'],
|
|
'e' => vec!['C'],
|
|
'f' => vec!['e'],
|
|
'G' => vec!['f', 'd'],
|
|
};
|
|
let id_fn = |node: &char| *node;
|
|
let neighbors_fn = |node: &char| neighbors[node].clone();
|
|
|
|
let common = topo_order_reverse(vec!['G'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['G', 'f', 'e', 'd', 'C', 'B', 'A']);
|
|
|
|
let common = topo_order_reverse_lazy(vec!['G'], id_fn, neighbors_fn).collect_vec();
|
|
assert_eq!(common, vec!['G', 'f', 'e', 'd', 'C', 'B', 'A']);
|
|
|
|
let common = topo_order_reverse_ord(vec!['G'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['G', 'f', 'e', 'd', 'C', 'B', 'A']);
|
|
|
|
// Iterator can be lazy for linear chunks.
|
|
let neighbors_fn = |node: &char| to_ok_iter(neighbors[node].iter().copied());
|
|
let mut inner_iter = TopoOrderReverseLazyInner::empty();
|
|
inner_iter.extend([Ok('G')]);
|
|
assert_eq!(inner_iter.next(id_fn, neighbors_fn), Some(Ok('G')));
|
|
assert!(!inner_iter.start.is_empty());
|
|
assert!(inner_iter.result.is_empty());
|
|
assert_eq!(
|
|
iter::from_fn(|| inner_iter.next(id_fn, neighbors_fn))
|
|
.take(4)
|
|
.collect_vec(),
|
|
['f', 'e', 'd', 'C'].map(Ok),
|
|
);
|
|
assert!(!inner_iter.start.is_empty());
|
|
assert!(inner_iter.result.is_empty());
|
|
}
|
|
|
|
#[test]
|
|
fn test_topo_order_reverse_multiple_heads() {
|
|
// This graph:
|
|
// o F
|
|
// |\
|
|
// o | E
|
|
// | o D
|
|
// | | o C
|
|
// | | |
|
|
// | | o B
|
|
// | |/
|
|
// |/
|
|
// o A
|
|
|
|
let neighbors = hashmap! {
|
|
'A' => vec![],
|
|
'B' => vec!['A'],
|
|
'C' => vec!['B'],
|
|
'D' => vec!['A'],
|
|
'E' => vec!['A'],
|
|
'F' => vec!['E', 'D'],
|
|
};
|
|
let id_fn = |node: &char| *node;
|
|
let neighbors_fn = |node: &char| neighbors[node].clone();
|
|
|
|
let common = topo_order_reverse(vec!['F', 'C'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['F', 'E', 'D', 'C', 'B', 'A']);
|
|
|
|
let common = topo_order_reverse_lazy(vec!['F', 'C'], id_fn, neighbors_fn).collect_vec();
|
|
assert_eq!(common, vec!['F', 'E', 'D', 'C', 'B', 'A']);
|
|
|
|
let common = topo_order_reverse_ord(vec!['F', 'C'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['F', 'E', 'D', 'C', 'B', 'A']);
|
|
}
|
|
|
|
#[test]
|
|
fn test_topo_order_reverse_multiple_roots() {
|
|
// This graph:
|
|
// o D
|
|
// | \
|
|
// o | C
|
|
// o B
|
|
// o A
|
|
|
|
let neighbors = hashmap! {
|
|
'A' => vec![],
|
|
'B' => vec!['A'],
|
|
'C' => vec![],
|
|
'D' => vec!['C', 'B'],
|
|
};
|
|
let id_fn = |node: &char| *node;
|
|
let neighbors_fn = |node: &char| neighbors[node].clone();
|
|
|
|
let common = topo_order_reverse(vec!['D'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['D', 'C', 'B', 'A']);
|
|
|
|
let common = topo_order_reverse_lazy(vec!['D'], id_fn, neighbors_fn).collect_vec();
|
|
assert_eq!(common, vec!['D', 'C', 'B', 'A']);
|
|
|
|
let common = topo_order_reverse_ord(vec!['D'], id_fn, neighbors_fn);
|
|
assert_eq!(common, vec!['D', 'C', 'B', 'A']);
|
|
}
|
|
|
|
#[test]
|
|
fn test_topo_order_reverse_cycle_linear() {
|
|
// This graph:
|
|
// o C
|
|
// o B
|
|
// o A (to C)
|
|
|
|
let neighbors = hashmap! {
|
|
'A' => vec!['C'],
|
|
'B' => vec!['A'],
|
|
'C' => vec!['B'],
|
|
};
|
|
let id_fn = |node: &char| *node;
|
|
let neighbors_fn = |node: &char| neighbors[node].clone();
|
|
|
|
let result = panic::catch_unwind(|| topo_order_reverse(vec!['C'], id_fn, neighbors_fn));
|
|
assert!(result.is_err());
|
|
|
|
topo_order_reverse_lazy(vec!['C'], id_fn, neighbors_fn)
|
|
.take(3)
|
|
.collect_vec(); // sanity check
|
|
let result = panic::catch_unwind(|| {
|
|
topo_order_reverse_lazy(vec!['C'], id_fn, neighbors_fn)
|
|
.take(4)
|
|
.collect_vec()
|
|
});
|
|
assert!(result.is_err());
|
|
|
|
let result = panic::catch_unwind(|| topo_order_reverse_ord(vec!['C'], id_fn, neighbors_fn));
|
|
assert!(result.is_err());
|
|
}
|
|
|
|
#[test]
|
|
fn test_topo_order_reverse_cycle_to_branchy_sub_graph() {
|
|
// This graph:
|
|
// o D
|
|
// |\
|
|
// | o C
|
|
// |/
|
|
// o B
|
|
// o A (to C)
|
|
|
|
let neighbors = hashmap! {
|
|
'A' => vec!['C'],
|
|
'B' => vec!['A'],
|
|
'C' => vec!['B'],
|
|
'D' => vec!['B', 'C'],
|
|
};
|
|
let id_fn = |node: &char| *node;
|
|
let neighbors_fn = |node: &char| neighbors[node].clone();
|
|
|
|
let result = panic::catch_unwind(|| topo_order_reverse(vec!['D'], id_fn, neighbors_fn));
|
|
assert!(result.is_err());
|
|
|
|
topo_order_reverse_lazy(vec!['D'], id_fn, neighbors_fn)
|
|
.take(4)
|
|
.collect_vec(); // sanity check
|
|
let result = panic::catch_unwind(|| {
|
|
topo_order_reverse_lazy(vec!['D'], id_fn, neighbors_fn)
|
|
.take(5)
|
|
.collect_vec()
|
|
});
|
|
assert!(result.is_err());
|
|
|
|
let result = panic::catch_unwind(|| topo_order_reverse_ord(vec!['D'], id_fn, neighbors_fn));
|
|
assert!(result.is_err());
|
|
}
|
|
|
|
#[test]
|
|
fn test_topo_order_ok() {
|
|
let neighbors = hashmap! {
|
|
'A' => vec![Err('Y')],
|
|
'B' => vec![Ok('A'), Err('X')],
|
|
'C' => vec![Ok('B')],
|
|
};
|
|
let id_fn = |node: &char| *node;
|
|
let neighbors_fn = |node: &char| neighbors[node].clone();
|
|
|
|
// Terminates at Err('X') no matter if the sorting order is forward or
|
|
// reverse. The visiting order matters.
|
|
let result = topo_order_forward_ok([Ok('C')], id_fn, neighbors_fn);
|
|
assert_eq!(result, Err('X'));
|
|
let result = topo_order_reverse_ok([Ok('C')], id_fn, neighbors_fn);
|
|
assert_eq!(result, Err('X'));
|
|
let nodes = topo_order_reverse_lazy_ok([Ok('C')], id_fn, neighbors_fn).collect_vec();
|
|
assert_eq!(nodes, [Ok('C'), Ok('B'), Err('X')]);
|
|
let result = topo_order_reverse_ord_ok([Ok('C')], id_fn, neighbors_fn);
|
|
assert_eq!(result, Err('X'));
|
|
}
|
|
|
|
#[test]
|
|
fn test_closest_common_node_tricky() {
|
|
// Test this case where A is the shortest distance away, but we still want the
|
|
// result to be B because A is an ancestor of B. In other words, we want
|
|
// to minimize the longest distance.
|
|
//
|
|
// E H
|
|
// |\ /|
|
|
// | D G |
|
|
// | C F |
|
|
// \ \ / /
|
|
// \ B /
|
|
// \|/
|
|
// A
|
|
|
|
let neighbors = hashmap! {
|
|
'A' => vec![],
|
|
'B' => vec!['A'],
|
|
'C' => vec!['B'],
|
|
'D' => vec!['C'],
|
|
'E' => vec!['A','D'],
|
|
'F' => vec!['B'],
|
|
'G' => vec!['F'],
|
|
'H' => vec!['A', 'G'],
|
|
};
|
|
|
|
let common = closest_common_node(
|
|
vec!['E'],
|
|
vec!['H'],
|
|
|node| *node,
|
|
|node| neighbors[node].clone(),
|
|
);
|
|
|
|
// TODO: fix the implementation to return B
|
|
assert_eq!(common, Some('A'));
|
|
}
|
|
|
|
#[test]
|
|
fn test_closest_common_node_ok() {
|
|
let neighbors = hashmap! {
|
|
'A' => vec![Err('Y')],
|
|
'B' => vec![Ok('A')],
|
|
'C' => vec![Ok('A')],
|
|
'D' => vec![Err('X')],
|
|
};
|
|
let id_fn = |node: &char| *node;
|
|
let neighbors_fn = |node: &char| neighbors[node].clone();
|
|
|
|
let result = closest_common_node_ok([Ok('B')], [Ok('C')], id_fn, neighbors_fn);
|
|
assert_eq!(result, Ok(Some('A')));
|
|
let result = closest_common_node_ok([Ok('C')], [Ok('D')], id_fn, neighbors_fn);
|
|
assert_eq!(result, Err('X'));
|
|
let result = closest_common_node_ok([Ok('C')], [Err('Z')], id_fn, neighbors_fn);
|
|
assert_eq!(result, Err('Z'));
|
|
}
|
|
|
|
#[test]
|
|
fn test_heads_mixed() {
|
|
// Test the uppercase letters are in the start set
|
|
//
|
|
// D F
|
|
// |/|
|
|
// C e
|
|
// |/
|
|
// b
|
|
// |
|
|
// A
|
|
|
|
let neighbors = hashmap! {
|
|
'A' => vec![],
|
|
'b' => vec!['A'],
|
|
'C' => vec!['b'],
|
|
'D' => vec!['C'],
|
|
'e' => vec!['b'],
|
|
'F' => vec!['C', 'e'],
|
|
};
|
|
|
|
let actual = heads(
|
|
vec!['A', 'C', 'D', 'F'],
|
|
|node| *node,
|
|
|node| neighbors[node].clone(),
|
|
);
|
|
assert_eq!(actual, hashset!['D', 'F']);
|
|
|
|
// Check with a different order in the start set
|
|
let actual = heads(
|
|
vec!['F', 'D', 'C', 'A'],
|
|
|node| *node,
|
|
|node| neighbors[node].clone(),
|
|
);
|
|
assert_eq!(actual, hashset!['D', 'F']);
|
|
}
|
|
|
|
#[test]
|
|
fn test_heads_ok() {
|
|
let neighbors = hashmap! {
|
|
'A' => vec![],
|
|
'B' => vec![Ok('A'), Err('X')],
|
|
'C' => vec![Ok('B')],
|
|
};
|
|
let id_fn = |node: &char| *node;
|
|
let neighbors_fn = |node: &char| neighbors[node].clone();
|
|
|
|
let result = heads_ok([Ok('C')], id_fn, neighbors_fn);
|
|
assert_eq!(result, Err('X'));
|
|
let result = heads_ok([Ok('B')], id_fn, neighbors_fn);
|
|
assert_eq!(result, Err('X'));
|
|
let result = heads_ok([Ok('A')], id_fn, neighbors_fn);
|
|
assert_eq!(result, Ok(hashset! {'A'}));
|
|
}
|
|
}
|