812de54ad0
to avoid deadlock when using Loro with multi-thread |
||
---|---|---|
.changeset | ||
.devcontainer | ||
.github/workflows | ||
.vscode | ||
crates | ||
docs | ||
examples/loro-quill | ||
loro-js | ||
scripts | ||
supply-chain | ||
.editorconfig | ||
.gitignore | ||
Cargo.lock | ||
Cargo.toml | ||
cliff.toml | ||
CONTRIBUTING.md | ||
deno.lock | ||
deny.toml | ||
LICENSE | ||
package.json | ||
pnpm-lock.yaml | ||
pnpm-workspace.yaml | ||
README.md | ||
rust-toolchain | ||
test.sh |
Loro
Reimagine state management with CRDTs 🦜
Make your app state synchronized and collaborative effortlessly.
Documentation | Getting Started | Rust Doc
https://github.com/loro-dev/loro/assets/18425020/fe246c47-a120-44b3-91d4-1e7232a5b4ac
Loro is a CRDTs(Conflict-free Replicated Data Types) library that makes building local-first apps easier. It is currently available for JavaScript (via WASM) and Rust developers.
Explore our vision in our blog: ✨ Reimagine State Management with CRDTs.
Features
Basic Features Provided by CRDTs
- P2P Synchronization
- Automatic Merging
- Local Availability
- Scalability
- Delta Updates
Supported CRDT Algorithms
- 📝 Text Editing with Fugue
- 📙 Peritext-like Rich Text CRDT
- 🌲 Moveable Tree
- 🚗 Moveable List
- 🗺️ Last-Write-Wins Map
- 🔄 Replayable Event Graph
Advanced Features in Loro
- 📖 Preserve Editing History in a Replayable Event Graph
- ⏱️ Fast Time Travel Through History
https://github.com/loro-dev/loro/assets/18425020/ec2d20a3-3d8c-4483-a601-b200243c9792
Example
import { expect, test } from 'vitest';
import { Loro, LoroList } from 'loro-crdt';
/**
* Demonstrates synchronization of two documents with two rounds of exchanges.
*/
// Initialize document A
const docA = new Loro();
const listA: LoroList = docA.getList('list');
listA.insert(0, 'A');
listA.insert(1, 'B');
listA.insert(2, 'C');
// Export the state of document A as a byte array
const bytes: Uint8Array = docA.exportFrom();
// Simulate sending `bytes` across the network to another peer, B
const docB = new Loro();
// Peer B imports the updates from A
docB.import(bytes);
// Verify that B's state matches A's state
expect(docB.toJSON()).toStrictEqual({
list: ['A', 'B', 'C'],
});
// Get the current operation log version of document B
const version = docB.oplogVersion();
// Simulate editing at B: delete item 'B'
const listB: LoroList = docB.getList('list');
listB.delete(1, 1);
// Export the updates from B since the last synchronization point
const bytesB: Uint8Array = docB.exportFrom(version);
// Simulate sending `bytesB` back across the network to A
// A imports the updates from B
docA.import(bytesB);
// Verify that the list at A now matches the list at B after merging
expect(docA.toJSON()).toStrictEqual({
list: ['A', 'C'],
});
Credits
Loro draws inspiration from the innovative work of the following projects and individuals:
- Ink & Switch: The principles of Local-first Software have greatly influenced this project. The Peritext project has also shaped our approach to rich text CRDTs.
- Diamond-types: The Replayable Event Graph (REG) algorithm from @josephg has been adapted to reduce the computation and space usage of CRDTs.
- Automerge: Their use of columnar encoding for CRDTs has informed our strategies for efficient data encoding.
- Yjs: We have incorporated a similar algorithm for effectively merging collaborative editing operations, thanks to their pioneering works.
- Matthew Weidner: His work on the Fugue algorithm has been invaluable, enhancing our text editing capabilities.
- Martin Kleppmann: His work on CRDTs has significantly influenced our comprehension of the field.