loro/crates/delta/src/array_vec.rs
Zixuan Chen 9d4f7aa8a3
DeltaRope (#327)
* feat: delta rope support init

* perf: use generic-btree v0.9.0

* refactor: improve readability and maintainability

* fix: fix several issues about composing

* fix: a few more issue about composing deletions

* test: rich text

* fix: cover more edge cases

* refactor: use deltarope for list event

* refactor: replace text delta with DeltaRope

* fix: list fuzz err

* fix: safety issue on insert_many

* chore: refine impl of text delta

* refactor: use Replace instead of insert+del in DeltaItem (#330)

* refactor: use Replace instead of insert+del in DeltaItem

* fix: each deltaitem should have non-zero rle_len
Updated generic-btree dependency to version 0.10.3 and refactored DeltaItem and DeltaRope implementations in loro-delta. Refine compose impl

* fix: update generic-btree to fix the update leaf issue

* chore: lockfile

* chore: clippy fix

* refactor: make composing easier to understand

* refactor: simplify the impl of composing
2024-04-24 13:53:26 +08:00

264 lines
7.5 KiB
Rust

use std::fmt::Debug;
use std::ops::{Deref, DerefMut};
use generic_btree::rle::{HasLength, Mergeable, Sliceable, TryInsert};
use heapless::Vec;
use crate::delta_trait::{DeltaAttr, DeltaValue};
use crate::{DeltaRope, DeltaRopeBuilder};
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct ArrayVec<V, const C: usize> {
vec: Vec<V, C>,
}
impl<V, const C: usize> ArrayVec<V, C> {
pub fn new() -> Self {
Self { vec: Vec::new() }
}
pub fn insert_many(&mut self, pos: usize, values: Self) -> Result<(), Self> {
if C < self.len() + values.len() {
return Err(values);
}
// SAFETY: We have the ownership of the values
unsafe {
let ptr_start = self.vec.as_mut_ptr().add(pos);
ptr_start.copy_to(ptr_start.add(values.len()), self.len() - pos);
ptr_start.copy_from_nonoverlapping(values.as_ptr(), values.len());
self.vec.set_len(self.len() + values.len());
}
// This will not cause memory leak because the vec is on the stack
// And we already take the ownership of the elements inside the vec
std::mem::forget(values.vec);
Ok(())
}
pub fn from_many(mut iter: impl Iterator<Item = V>) -> impl Iterator<Item = Self> {
let mut new = Self::new();
std::iter::from_fn(move || {
let mut v = iter.next();
while let Some(iv) = v {
if new.vec.push(iv).is_err() {
unreachable!()
}
if new.vec.is_full() {
break;
}
v = iter.next();
}
if new.len() == 0 {
return None;
}
Some(std::mem::take(&mut new))
})
}
// The type system doesn't allow us to use unexported types in trait's associated types
// So we don't impl the trait for this
#[allow(clippy::should_implement_trait)]
pub fn into_iter(self) -> impl Iterator<Item = V> {
self.vec.into_iter()
}
}
impl<V: Debug + Clone, const C: usize, Attr: DeltaAttr> DeltaRope<ArrayVec<V, C>, Attr> {
pub fn from_many(iter: impl Iterator<Item = V>) -> Self {
let mut rope = DeltaRope::new();
rope.insert_values(
0,
ArrayVec::from_many(iter).map(|x| crate::DeltaItem::Replace {
value: x,
attr: Default::default(),
delete: 0,
}),
);
rope
}
}
impl<V: Debug + Clone, Attr: DeltaAttr, const C: usize> DeltaRopeBuilder<ArrayVec<V, C>, Attr> {
pub fn insert_many(mut self, value_iter: impl IntoIterator<Item = V>, attr: Attr) -> Self {
let iter = ArrayVec::from_many(value_iter.into_iter());
for value in iter {
self = self.insert(value, attr.clone());
}
self
}
}
impl<V, const C: usize> Default for ArrayVec<V, C> {
fn default() -> Self {
Self::new()
}
}
impl<V, const C: usize> Deref for ArrayVec<V, C> {
type Target = Vec<V, C>;
fn deref(&self) -> &Self::Target {
&self.vec
}
}
impl<V, const C: usize> DerefMut for ArrayVec<V, C> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.vec
}
}
impl<const C: usize, T> HasLength for ArrayVec<T, C> {
fn rle_len(&self) -> usize {
self.len()
}
}
impl<const C: usize, T: Clone> Sliceable for ArrayVec<T, C> {
fn _slice(&self, range: std::ops::Range<usize>) -> Self {
Self {
vec: Vec::from_slice(&self.vec.as_slice()[range]).unwrap(),
}
}
fn split(&mut self, pos: usize) -> Self {
let right = self.slice(pos..);
self.vec.truncate(pos);
right
}
}
impl<const C: usize, T: Clone> Mergeable for ArrayVec<T, C> {
fn can_merge(&self, rhs: &Self) -> bool {
C >= self.len() + rhs.len()
}
fn merge_right(&mut self, rhs: &Self) {
self.extend_from_slice(rhs.as_slice()).unwrap();
}
fn merge_left(&mut self, left: &Self) {
match self.insert_many(0, left.clone()) {
Ok(_) => {}
Err(_) => unreachable!(),
}
}
}
impl<const C: usize, T> TryInsert for ArrayVec<T, C> {
fn try_insert(&mut self, pos: usize, elem: Self) -> Result<(), Self>
where
Self: Sized,
{
self.insert_many(pos, elem)
}
}
impl<const C: usize, T> DeltaValue for ArrayVec<T, C> where T: Clone + Debug {}
impl<T, const A: usize, const C: usize> From<[T; A]> for ArrayVec<T, C>
where
T: Clone,
{
fn from(array: [T; A]) -> Self {
let vec = Vec::from_slice(&array).unwrap();
ArrayVec { vec }
}
}
#[cfg(test)]
mod test {
use std::sync::Arc;
use super::*;
#[test]
fn test_insert() {
let mut array_vec: ArrayVec<Arc<i32>, 8> =
ArrayVec::from([Arc::new(1), Arc::new(2), Arc::new(3)]);
let b = ArrayVec::from([Arc::new(1), Arc::new(2), Arc::new(3)]);
array_vec.insert_many(1, b).unwrap();
}
#[test]
fn test_slice() {
let array_vec: ArrayVec<i32, 5> = ArrayVec::from([1, 2, 3, 4, 5]);
let sliced = array_vec._slice(1..3);
assert_eq!(sliced.as_slice(), &[2, 3]);
}
#[test]
fn test_split() {
let mut array_vec: ArrayVec<i32, 5> = ArrayVec::from([1, 2, 3, 4, 5]);
let right = array_vec.split(2);
assert_eq!(array_vec.as_slice(), &[1, 2]);
assert_eq!(right.as_slice(), &[3, 4, 5]);
}
#[test]
fn test_can_merge() {
let array_vec1: ArrayVec<i32, 10> = ArrayVec::from([1, 2, 3]);
let array_vec2: ArrayVec<i32, 10> = ArrayVec::from([4, 5, 6]);
assert!(array_vec1.can_merge(&array_vec2));
}
#[test]
fn test_merge_right() {
let mut array_vec1: ArrayVec<i32, 10> = ArrayVec::from([1, 2, 3]);
let array_vec2: ArrayVec<i32, 10> = ArrayVec::from([4, 5, 6]);
array_vec1.merge_right(&array_vec2);
assert_eq!(array_vec1.as_slice(), &[1, 2, 3, 4, 5, 6]);
}
#[test]
fn test_merge_left() {
let mut array_vec1: ArrayVec<i32, 10> = ArrayVec::from([4, 5, 6]);
let array_vec2: ArrayVec<i32, 10> = ArrayVec::from([1, 2, 3]);
array_vec1.merge_left(&array_vec2);
assert_eq!(array_vec1.as_slice(), &[1, 2, 3, 4, 5, 6]);
}
#[test]
fn test_try_insert() {
let mut array_vec: ArrayVec<i32, 10> = ArrayVec::from([1, 2, 5]);
let result = array_vec.try_insert(2, ArrayVec::from([3, 4]));
assert!(result.is_ok());
assert_eq!(array_vec.as_slice(), &[1, 2, 3, 4, 5]);
}
#[test]
fn test_merge_fail() {
let array_vec1: ArrayVec<i32, 5> = ArrayVec::from([1, 2, 3, 4, 5]);
let array_vec2: ArrayVec<i32, 5> = ArrayVec::from([6, 7, 8]);
let result = array_vec1.can_merge(&array_vec2);
assert!(!result);
}
#[test]
fn test_try_insert_fail() {
let mut array_vec: ArrayVec<i32, 5> = ArrayVec::from([1, 2, 4, 5, 6]);
let result = array_vec.try_insert(2, ArrayVec::from([3]));
assert!(result.is_err());
}
#[test]
fn test_insert_many_fail() {
let mut array_vec: ArrayVec<i32, 5> = ArrayVec::from([1, 2, 3]);
let result = array_vec.insert_many(1, ArrayVec::from([4, 5, 6]));
assert!(result.is_err());
}
#[test]
#[should_panic]
fn merge_right_overflow() {
let mut array_vec: ArrayVec<i32, 5> = ArrayVec::from([1, 2, 3]);
array_vec.merge_right(&ArrayVec::from([4, 5, 6]));
}
}