make/remake.c
1999-08-24 04:49:39 +00:00

1327 lines
36 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Basic dependency engine for GNU Make.
Copyright (C) 1988,89,90,91,92,93,94,95,96,97 Free Software Foundation, Inc.
This file is part of GNU Make.
GNU Make is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Make is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Make; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "make.h"
#include "filedef.h"
#include "job.h"
#include "commands.h"
#include "dep.h"
#include "variable.h"
#include <assert.h>
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#else
#include <sys/file.h>
#endif
#ifdef VMS
#include <starlet.h>
#endif
#ifdef WINDOWS32
#include <io.h>
#endif
extern int try_implicit_rule PARAMS ((struct file *file, unsigned int depth));
/* Incremented when a command is started (under -n, when one would be). */
unsigned int commands_started = 0;
static int update_file PARAMS ((struct file *file, unsigned int depth));
static int update_file_1 PARAMS ((struct file *file, unsigned int depth));
static int check_dep PARAMS ((struct file *file, unsigned int depth, FILE_TIMESTAMP this_mtime, int *must_make_ptr));
static int touch_file PARAMS ((struct file *file));
static void remake_file PARAMS ((struct file *file));
static FILE_TIMESTAMP name_mtime PARAMS ((char *name));
static int library_search PARAMS ((char **lib, FILE_TIMESTAMP *mtime_ptr));
/* Remake all the goals in the `struct dep' chain GOALS. Return -1 if nothing
was done, 0 if all goals were updated successfully, or 1 if a goal failed.
If MAKEFILES is nonzero, these goals are makefiles, so -t, -q, and -n should
be disabled for them unless they were also command-line targets, and we
should only make one goal at a time and return as soon as one goal whose
`changed' member is nonzero is successfully made. */
/* We need to know this "lower down" for correct error handling. */
static int updating_makefiles = 0;
int
update_goal_chain (goals, makefiles)
register struct dep *goals;
int makefiles;
{
int t = touch_flag, q = question_flag, n = just_print_flag;
unsigned int j = job_slots;
int status = -1;
updating_makefiles = makefiles;
#define MTIME(file) (makefiles ? file_mtime_no_search (file) \
: file_mtime (file))
/* Duplicate the chain so we can remove things from it. */
goals = copy_dep_chain (goals);
{
/* Clear the `changed' flag of each goal in the chain.
We will use the flag below to notice when any commands
have actually been run for a target. When no commands
have been run, we give an "up to date" diagnostic. */
struct dep *g;
for (g = goals; g != 0; g = g->next)
g->changed = 0;
}
#if 0
/* Only run one job at a time when building makefiles.
No one seems to know why this was done, and no one can think of a good
reason to do it. Hopefully an obvious one won't appear as soon as we
release the next version :-/. */
if (makefiles)
job_slots = 1;
#endif
/* All files start with the considered bit 0, so the global value is 1. */
considered = 1;
/* Update all the goals until they are all finished. */
while (goals != 0)
{
register struct dep *g, *lastgoal;
/* Start jobs that are waiting for the load to go down. */
start_waiting_jobs ();
/* Wait for a child to die. */
reap_children (1, 0);
lastgoal = 0;
g = goals;
while (g != 0)
{
/* Iterate over all double-colon entries for this file. */
struct file *file;
int stop = 0, any_not_updated = 0;
for (file = g->file->double_colon ? g->file->double_colon : g->file;
file != NULL;
file = file->prev)
{
unsigned int ocommands_started;
int x;
check_renamed (file);
if (makefiles)
{
if (file->cmd_target)
{
touch_flag = t;
question_flag = q;
just_print_flag = n;
}
else
touch_flag = question_flag = just_print_flag = 0;
}
/* Save the old value of `commands_started' so we can compare
later. It will be incremented when any commands are
actually run. */
ocommands_started = commands_started;
x = update_file (file, makefiles ? 1 : 0);
check_renamed (file);
/* Set the goal's `changed' flag if any commands were started
by calling update_file above. We check this flag below to
decide when to give an "up to date" diagnostic. */
g->changed += commands_started - ocommands_started;
stop = 0;
if (x != 0 || file->updated)
{
/* If STATUS was not already 1, set it to 1 if
updating failed, or to 0 if updating succeeded.
Leave STATUS as it is if no updating was done. */
if (status < 1)
{
if (file->update_status != 0)
{
/* Updating failed, or -q triggered.
The STATUS value tells our caller which. */
status = file->update_status;
/* If -q just triggered, stop immediately.
It doesn't matter how much more we run,
since we already know the answer to return. */
stop = (!keep_going_flag && !question_flag
&& !makefiles);
}
else if (file->updated && g->changed &&
file->last_mtime != file->mtime_before_update)
{
/* Updating was done. If this is a makefile and
just_print_flag or question_flag is set
(meaning -n or -q was given and this file was
specified as a command-line target), don't
change STATUS. If STATUS is changed, we will
get re-exec'd, and fall into an infinite loop. */
if (!makefiles
|| (!just_print_flag && !question_flag))
status = 0;
if (makefiles && file->dontcare)
/* This is a default makefile. Stop remaking. */
stop = 1;
}
}
}
/* Keep track if any double-colon entry is not finished.
When they are all finished, the goal is finished. */
any_not_updated |= !file->updated;
if (stop)
break;
}
/* Reset FILE since it is null at the end of the loop. */
file = g->file;
if (stop || !any_not_updated)
{
/* If we have found nothing whatever to do for the goal,
print a message saying nothing needs doing. */
if (!makefiles
/* If the update_status is zero, we updated successfully
or not at all. G->changed will have been set above if
any commands were actually started for this goal. */
&& file->update_status == 0 && !g->changed
/* Never give a message under -s or -q. */
&& !silent_flag && !question_flag)
message (1, ((file->phony || file->cmds == 0)
? _("Nothing to be done for `%s'.")
: _("`%s' is up to date.")),
file->name);
/* This goal is finished. Remove it from the chain. */
if (lastgoal == 0)
goals = g->next;
else
lastgoal->next = g->next;
/* Free the storage. */
free ((char *) g);
g = lastgoal == 0 ? goals : lastgoal->next;
if (stop)
break;
}
else
{
lastgoal = g;
g = g->next;
}
}
/* If we reached the end of the dependency graph toggle the considered
flag for the next pass. */
if (g == 0)
considered = !considered;
}
if (makefiles)
{
touch_flag = t;
question_flag = q;
just_print_flag = n;
job_slots = j;
}
return status;
}
/* Generate an error/fatal message if no rules are available for the target.
*/
static void
no_rule_error(file)
struct file *file;
{
static const char msg_noparent[]
= _("%sNo rule to make target `%s'%s");
static const char msg_parent[]
= _("%sNo rule to make target `%s', needed by `%s'%s");
if (keep_going_flag || file->dontcare)
{
/* If the previous attempt was made while we were creating
makefiles, but we aren't anymore, print an error now. */
if (!file->dontcare
|| (file->mfile_status && !updating_makefiles))
{
if (file->parent == 0)
error (NILF, msg_noparent, "*** ", file->name, ".");
else
error (NILF, msg_parent, "*** ",
file->name, file->parent->name, ".");
}
file->update_status = 2;
file->mfile_status = updating_makefiles;
}
else if (file->parent == 0)
fatal (NILF, msg_noparent, "", file->name, "");
else
fatal (NILF, msg_parent, "", file->name, file->parent->name, "");
}
/* If FILE is not up to date, execute the commands for it.
Return 0 if successful, 1 if unsuccessful;
but with some flag settings, just call `exit' if unsuccessful.
DEPTH is the depth in recursions of this function.
We increment it during the consideration of our dependencies,
then decrement it again after finding out whether this file
is out of date.
If there are multiple double-colon entries for FILE,
each is considered in turn. */
static int
update_file (file, depth)
struct file *file;
unsigned int depth;
{
register int status = 0;
register struct file *f;
for (f = file->double_colon ? file->double_colon : file; f != 0; f = f->prev)
{
/* Prune the dependency graph: if we've already been here on _this_
pass through the dependency graph, we don't have to go any further.
We won't reap_children until we start the next pass, so no state
change is possible below here until then. */
if (f->considered == considered)
{
DEBUGPR (_("Pruning file `%s'.\n"));
continue;
}
f->considered = considered;
status |= update_file_1 (f, depth);
check_renamed (f);
if (status != 0 && !keep_going_flag)
return status;
switch (f->command_state)
{
case cs_finished:
/* The file is done being remade. */
break;
case cs_running:
case cs_deps_running:
/* Don't run the other :: rules for this
file until this rule is finished. */
return 0;
default:
assert (f->command_state == cs_running);
break;
}
}
return status;
}
/* Consider a single `struct file' and update it as appropriate. */
static int
update_file_1 (file, depth)
struct file *file;
unsigned int depth;
{
register FILE_TIMESTAMP this_mtime;
int noexist, must_make, deps_changed;
int dep_status = 0;
register struct dep *d, *lastd;
int running = 0;
DEBUGPR (_("Considering target file `%s'.\n"));
if (file->updated)
{
if (file->update_status > 0)
{
DEBUGPR (_("Recently tried and failed to update file `%s'.\n"));
no_rule_error(file);
return file->update_status;
}
DEBUGPR (_("File `%s' was considered already.\n"));
return 0;
}
switch (file->command_state)
{
case cs_not_started:
case cs_deps_running:
break;
case cs_running:
DEBUGPR (_("Still updating file `%s'.\n"));
return 0;
case cs_finished:
DEBUGPR (_("Finished updating file `%s'.\n"));
return file->update_status;
default:
abort ();
}
++depth;
/* Notice recursive update of the same file. */
file->updating = 1;
/* Looking at the file's modtime beforehand allows the possibility
that its name may be changed by a VPATH search, and thus it may
not need an implicit rule. If this were not done, the file
might get implicit commands that apply to its initial name, only
to have that name replaced with another found by VPATH search. */
this_mtime = file_mtime (file);
check_renamed (file);
noexist = this_mtime == (FILE_TIMESTAMP) -1;
if (noexist)
DEBUGPR (_("File `%s' does not exist.\n"));
must_make = noexist;
/* If file was specified as a target with no commands,
come up with some default commands. */
if (!file->phony && file->cmds == 0 && !file->tried_implicit)
{
if (try_implicit_rule (file, depth))
DEBUGPR (_("Found an implicit rule for `%s'.\n"));
else
DEBUGPR (_("No implicit rule found for `%s'.\n"));
file->tried_implicit = 1;
}
if (file->cmds == 0 && !file->is_target
&& default_file != 0 && default_file->cmds != 0)
{
DEBUGPR (_("Using default commands for `%s'.\n"));
file->cmds = default_file->cmds;
}
/* Update all non-intermediate files we depend on, if necessary,
and see whether any of them is more recent than this file. */
lastd = 0;
d = file->deps;
while (d != 0)
{
FILE_TIMESTAMP mtime;
check_renamed (d->file);
mtime = file_mtime (d->file);
check_renamed (d->file);
if (d->file->updating)
{
error (NILF, _("Circular %s <- %s prerequisite dropped."),
file->name, d->file->name);
/* We cannot free D here because our the caller will still have
a reference to it when we were called recursively via
check_dep below. */
if (lastd == 0)
file->deps = d->next;
else
lastd->next = d->next;
d = d->next;
continue;
}
d->file->parent = file;
dep_status |= check_dep (d->file, depth, this_mtime, &must_make);
check_renamed (d->file);
{
register struct file *f = d->file;
if (f->double_colon)
f = f->double_colon;
do
{
running |= (f->command_state == cs_running
|| f->command_state == cs_deps_running);
f = f->prev;
}
while (f != 0);
}
if (dep_status != 0 && !keep_going_flag)
break;
if (!running)
d->changed = file_mtime (d->file) != mtime;
lastd = d;
d = d->next;
}
/* Now we know whether this target needs updating.
If it does, update all the intermediate files we depend on. */
if (must_make)
{
for (d = file->deps; d != 0; d = d->next)
if (d->file->intermediate)
{
FILE_TIMESTAMP mtime = file_mtime (d->file);
check_renamed (d->file);
d->file->parent = file;
dep_status |= update_file (d->file, depth);
check_renamed (d->file);
{
register struct file *f = d->file;
if (f->double_colon)
f = f->double_colon;
do
{
running |= (f->command_state == cs_running
|| f->command_state == cs_deps_running);
f = f->prev;
}
while (f != 0);
}
if (dep_status != 0 && !keep_going_flag)
break;
if (!running)
d->changed = ((file->phony && file->cmds != 0)
|| file_mtime (d->file) != mtime);
}
}
file->updating = 0;
DEBUGPR (_("Finished prerequisites of target file `%s'.\n"));
if (running)
{
set_command_state (file, cs_deps_running);
--depth;
DEBUGPR (_("The prerequisites of `%s' are being made.\n"));
return 0;
}
/* If any dependency failed, give up now. */
if (dep_status != 0)
{
file->update_status = dep_status;
notice_finished_file (file);
depth--;
DEBUGPR (_("Giving up on target file `%s'.\n"));
if (depth == 0 && keep_going_flag
&& !just_print_flag && !question_flag)
error (NILF, _("Target `%s' not remade because of errors."), file->name);
return dep_status;
}
if (file->command_state == cs_deps_running)
/* The commands for some deps were running on the last iteration, but
they have finished now. Reset the command_state to not_started to
simplify later bookkeeping. It is important that we do this only
when the prior state was cs_deps_running, because that prior state
was definitely propagated to FILE's also_make's by set_command_state
(called above), but in another state an also_make may have
independently changed to finished state, and we would confuse that
file's bookkeeping (updated, but not_started is bogus state). */
set_command_state (file, cs_not_started);
/* Now record which dependencies are more
recent than this file, so we can define $?. */
deps_changed = 0;
for (d = file->deps; d != 0; d = d->next)
{
FILE_TIMESTAMP d_mtime = file_mtime (d->file);
check_renamed (d->file);
#if 1 /* %%% In version 4, remove this code completely to
implement not remaking deps if their deps are newer
than their parents. */
if (d_mtime == (FILE_TIMESTAMP) -1 && !d->file->intermediate)
/* We must remake if this dep does not
exist and is not intermediate. */
must_make = 1;
#endif
/* Set DEPS_CHANGED if this dep actually changed. */
deps_changed |= d->changed;
/* Set D->changed if either this dep actually changed,
or its dependent, FILE, is older or does not exist. */
d->changed |= noexist || d_mtime > this_mtime;
if (debug_flag && !noexist)
{
print_spaces (depth);
if (d_mtime == (FILE_TIMESTAMP) -1)
printf (_("Prerequisite `%s' does not exist.\n"), dep_name (d));
else
printf (_("Prerequisite `%s' is %s than target `%s'.\n"),
dep_name (d), d->changed ? _("newer") : _("older"), file->name);
fflush (stdout);
}
}
/* Here depth returns to the value it had when we were called. */
depth--;
if (file->double_colon && file->deps == 0)
{
must_make = 1;
DEBUGPR (_("Target `%s' is double-colon and has no prerequisites.\n"));
}
else if (!noexist && file->is_target && !deps_changed && file->cmds == 0)
{
must_make = 0;
DEBUGPR (_("No commands for `%s' and no prerequisites actually changed.\n"));
}
if (!must_make)
{
if (debug_flag)
{
print_spaces(depth);
printf(_("No need to remake target `%s'"), file->name);
if (!streq(file->name, file->hname))
printf(_("; using VPATH name `%s'"), file->hname);
printf(".\n");
fflush(stdout);
}
notice_finished_file (file);
/* Since we don't need to remake the file, convert it to use the
VPATH filename if we found one. hfile will be either the
local name if no VPATH or the VPATH name if one was found. */
while (file)
{
file->name = file->hname;
file = file->prev;
}
return 0;
}
DEBUGPR (_("Must remake target `%s'.\n"));
/* It needs to be remade. If it's VPATH and not reset via GPATH, toss the
VPATH. */
if (!streq(file->name, file->hname))
{
if (debug_flag)
{
print_spaces (depth);
printf(_(" Ignoring VPATH name `%s'.\n"), file->hname);
fflush(stdout);
}
file->ignore_vpath = 1;
}
/* Now, take appropriate actions to remake the file. */
remake_file (file);
if (file->command_state != cs_finished)
{
DEBUGPR (_("Commands of `%s' are being run.\n"));
return 0;
}
switch (file->update_status)
{
case 2:
DEBUGPR (_("Failed to remake target file `%s'.\n"));
break;
case 0:
DEBUGPR (_("Successfully remade target file `%s'.\n"));
break;
case 1:
DEBUGPR (_("Target file `%s' needs remade under -q.\n"));
break;
default:
assert (file->update_status >= 0 && file->update_status <= 2);
break;
}
file->updated = 1;
return file->update_status;
}
/* Set FILE's `updated' flag and re-check its mtime and the mtime's of all
files listed in its `also_make' member. Under -t, this function also
touches FILE.
On return, FILE->update_status will no longer be -1 if it was. */
void
notice_finished_file (file)
register struct file *file;
{
struct dep *d;
int ran = file->command_state == cs_running;
file->command_state = cs_finished;
file->updated = 1;
if (touch_flag
/* The update status will be:
-1 if this target was not remade;
0 if 0 or more commands (+ or ${MAKE}) were run and won;
1 if some commands were run and lost.
We touch the target if it has commands which either were not run
or won when they ran (i.e. status is 0). */
&& file->update_status == 0)
{
if (file->cmds != 0 && file->cmds->any_recurse)
{
/* If all the command lines were recursive,
we don't want to do the touching. */
unsigned int i;
for (i = 0; i < file->cmds->ncommand_lines; ++i)
if (!(file->cmds->lines_flags[i] & COMMANDS_RECURSE))
goto have_nonrecursing;
}
else
{
have_nonrecursing:
if (file->phony)
file->update_status = 0;
else
/* Should set file's modification date and do nothing else. */
file->update_status = touch_file (file);
}
}
if (ran && !file->phony)
{
struct file *f;
assert(file->mtime_before_update == 0);
file->mtime_before_update = file->last_mtime;
if (just_print_flag || question_flag
|| (file->is_target && file->cmds == 0))
file->last_mtime = NEW_MTIME;
else
file->last_mtime = 0;
/* Propagate the change of modification time to all the double-colon
entries for this file. */
for (f = file->double_colon; f != 0; f = f->next)
f->last_mtime = file->last_mtime;
}
if (ran && file->update_status != -1)
/* We actually tried to update FILE, which has
updated its also_make's as well (if it worked).
If it didn't work, it wouldn't work again for them.
So mark them as updated with the same status. */
for (d = file->also_make; d != 0; d = d->next)
{
d->file->command_state = cs_finished;
d->file->updated = 1;
d->file->update_status = file->update_status;
if (ran && !d->file->phony)
/* Fetch the new modification time.
We do this instead of just invalidating the cached time
so that a vpath_search can happen. Otherwise, it would
never be done because the target is already updated. */
(void) f_mtime (d->file, 0);
}
else if (file->update_status == -1)
/* Nothing was done for FILE, but it needed nothing done.
So mark it now as "succeeded". */
file->update_status = 0;
}
/* Check whether another file (whose mtime is THIS_MTIME)
needs updating on account of a dependency which is file FILE.
If it does, store 1 in *MUST_MAKE_PTR.
In the process, update any non-intermediate files
that FILE depends on (including FILE itself).
Return nonzero if any updating failed. */
static int
check_dep (file, depth, this_mtime, must_make_ptr)
struct file *file;
unsigned int depth;
FILE_TIMESTAMP this_mtime;
int *must_make_ptr;
{
register struct dep *d;
int dep_status = 0;
++depth;
file->updating = 1;
if (!file->intermediate)
/* If this is a non-intermediate file, update it and record
whether it is newer than THIS_MTIME. */
{
FILE_TIMESTAMP mtime;
dep_status = update_file (file, depth);
check_renamed (file);
mtime = file_mtime (file);
check_renamed (file);
if (mtime == (FILE_TIMESTAMP) -1 || mtime > this_mtime)
*must_make_ptr = 1;
}
else
{
/* FILE is an intermediate file. */
FILE_TIMESTAMP mtime;
if (!file->phony && file->cmds == 0 && !file->tried_implicit)
{
if (try_implicit_rule (file, depth))
DEBUGPR (_("Found an implicit rule for `%s'.\n"));
else
DEBUGPR (_("No implicit rule found for `%s'.\n"));
file->tried_implicit = 1;
}
if (file->cmds == 0 && !file->is_target
&& default_file != 0 && default_file->cmds != 0)
{
DEBUGPR (_("Using default commands for `%s'.\n"));
file->cmds = default_file->cmds;
}
/* If the intermediate file actually exists
and is newer, then we should remake from it. */
check_renamed (file);
mtime = file_mtime (file);
check_renamed (file);
if (mtime != (FILE_TIMESTAMP) -1 && mtime > this_mtime)
*must_make_ptr = 1;
/* Otherwise, update all non-intermediate files we depend on,
if necessary, and see whether any of them is more
recent than the file on whose behalf we are checking. */
else
{
register struct dep *lastd;
lastd = 0;
d = file->deps;
while (d != 0)
{
if (d->file->updating)
{
error (NILF, _("Circular %s <- %s prerequisite dropped."),
file->name, d->file->name);
if (lastd == 0)
{
file->deps = d->next;
free ((char *) d);
d = file->deps;
}
else
{
lastd->next = d->next;
free ((char *) d);
d = lastd->next;
}
continue;
}
d->file->parent = file;
dep_status |= check_dep (d->file, depth, this_mtime, must_make_ptr);
check_renamed (d->file);
if (dep_status != 0 && !keep_going_flag)
break;
if (d->file->command_state == cs_running
|| d->file->command_state == cs_deps_running)
/* Record that some of FILE's deps are still being made.
This tells the upper levels to wait on processing it until
the commands are finished. */
set_command_state (file, cs_deps_running);
lastd = d;
d = d->next;
}
}
}
file->updating = 0;
return dep_status;
}
/* Touch FILE. Return zero if successful, one if not. */
#define TOUCH_ERROR(call) return (perror_with_name (call, file->name), 1)
static int
touch_file (file)
register struct file *file;
{
if (!silent_flag)
message (0, "touch %s", file->name);
#ifndef NO_ARCHIVES
if (ar_name (file->name))
return ar_touch (file->name);
else
#endif
{
int fd = open (file->name, O_RDWR | O_CREAT, 0666);
if (fd < 0)
TOUCH_ERROR ("touch: open: ");
else
{
struct stat statbuf;
char buf;
int status;
do
status = fstat (fd, &statbuf);
while (status < 0 && EINTR_SET);
if (status < 0)
TOUCH_ERROR ("touch: fstat: ");
/* Rewrite character 0 same as it already is. */
if (read (fd, &buf, 1) < 0)
TOUCH_ERROR ("touch: read: ");
if (lseek (fd, 0L, 0) < 0L)
TOUCH_ERROR ("touch: lseek: ");
if (write (fd, &buf, 1) < 0)
TOUCH_ERROR ("touch: write: ");
/* If file length was 0, we just
changed it, so change it back. */
if (statbuf.st_size == 0)
{
(void) close (fd);
fd = open (file->name, O_RDWR | O_TRUNC, 0666);
if (fd < 0)
TOUCH_ERROR ("touch: open: ");
}
(void) close (fd);
}
}
return 0;
}
/* Having checked and updated the dependencies of FILE,
do whatever is appropriate to remake FILE itself.
Return the status from executing FILE's commands. */
static void
remake_file (file)
struct file *file;
{
if (file->cmds == 0)
{
if (file->phony)
/* Phony target. Pretend it succeeded. */
file->update_status = 0;
else if (file->is_target)
/* This is a nonexistent target file we cannot make.
Pretend it was successfully remade. */
file->update_status = 0;
else
no_rule_error(file);
}
else
{
chop_commands (file->cmds);
if (!touch_flag || file->cmds->any_recurse)
{
execute_file_commands (file);
return;
}
else
/* This tells notice_finished_file it is ok to touch the file. */
file->update_status = 0;
}
/* This does the touching under -t. */
notice_finished_file (file);
}
/* Return the mtime of a file, given a `struct file'.
Caches the time in the struct file to avoid excess stat calls.
If the file is not found, and SEARCH is nonzero, VPATH searching and
replacement is done. If that fails, a library (-lLIBNAME) is tried and
the library's actual name (/lib/libLIBNAME.a, etc.) is substituted into
FILE. */
FILE_TIMESTAMP
f_mtime (file, search)
register struct file *file;
int search;
{
FILE_TIMESTAMP mtime;
/* File's mtime is not known; must get it from the system. */
#ifndef NO_ARCHIVES
if (ar_name (file->name))
{
/* This file is an archive-member reference. */
char *arname, *memname;
struct file *arfile;
int arname_used = 0;
/* Find the archive's name. */
ar_parse_name (file->name, &arname, &memname);
/* Find the modification time of the archive itself.
Also allow for its name to be changed via VPATH search. */
arfile = lookup_file (arname);
if (arfile == 0)
{
arfile = enter_file (arname);
arname_used = 1;
}
mtime = f_mtime (arfile, search);
check_renamed (arfile);
if (search && strcmp (arfile->hname, arname))
{
/* The archive's name has changed.
Change the archive-member reference accordingly. */
char *name;
unsigned int arlen, memlen;
if (!arname_used)
{
free (arname);
arname_used = 1;
}
arname = arfile->hname;
arlen = strlen (arname);
memlen = strlen (memname);
/* free (file->name); */
name = (char *) xmalloc (arlen + 1 + memlen + 2);
bcopy (arname, name, arlen);
name[arlen] = '(';
bcopy (memname, name + arlen + 1, memlen);
name[arlen + 1 + memlen] = ')';
name[arlen + 1 + memlen + 1] = '\0';
/* If the archive was found with GPATH, make the change permanent;
otherwise defer it until later. */
if (arfile->name == arfile->hname)
rename_file (file, name);
else
rehash_file (file, name);
check_renamed (file);
}
if (!arname_used)
free (arname);
free (memname);
if (mtime == (FILE_TIMESTAMP) -1)
/* The archive doesn't exist, so it's members don't exist either. */
return (FILE_TIMESTAMP) -1;
mtime = ar_member_date (file->hname);
}
else
#endif
{
mtime = name_mtime (file->name);
if (mtime == (FILE_TIMESTAMP) -1 && search && !file->ignore_vpath)
{
/* If name_mtime failed, search VPATH. */
char *name = file->name;
if (vpath_search (&name, &mtime)
/* Last resort, is it a library (-lxxx)? */
|| (name[0] == '-' && name[1] == 'l'
&& library_search (&name, &mtime)))
{
if (mtime != 0)
/* vpath_search and library_search store zero in MTIME
if they didn't need to do a stat call for their work. */
file->last_mtime = mtime;
/* If we found it in VPATH, see if it's in GPATH too; if so,
change the name right now; if not, defer until after the
dependencies are updated. */
if (gpath_search (name, strlen(name) - strlen(file->name) - 1))
{
rename_file (file, name);
check_renamed (file);
return file_mtime (file);
}
rehash_file (file, name);
check_renamed (file);
mtime = name_mtime (name);
}
}
}
{
/* Files can have bogus timestamps that nothing newly made will be
"newer" than. Updating their dependents could just result in loops.
So notify the user of the anomaly with a warning.
We only need to do this once, for now. */
static FILE_TIMESTAMP now = 0;
if (!clock_skew_detected
&& mtime != (FILE_TIMESTAMP)-1 && mtime > now
&& !file->updated)
{
/* This file's time appears to be in the future.
Update our concept of the present, and compare again. */
now = file_timestamp_now ();
#ifdef WINDOWS32
/*
* FAT filesystems round time to nearest even second(!). Just
* allow for any file (NTFS or FAT) to perhaps suffer from this
* braindamage.
*/
if (mtime > now && (((mtime % 2) == 0) && ((mtime-1) > now)))
#else
#ifdef __MSDOS__
/* Scrupulous testing indicates that some Windows
filesystems can set file times up to 3 sec into the future! */
if (mtime > now + 3)
#else
if (mtime > now)
#endif
#endif
{
char mtimebuf[FILE_TIMESTAMP_PRINT_LEN_BOUND + 1];
char nowbuf[FILE_TIMESTAMP_PRINT_LEN_BOUND + 1];
file_timestamp_sprintf (mtimebuf, mtime);
file_timestamp_sprintf (nowbuf, now);
error (NILF, _("*** Warning: File `%s' has modification time in the future (%s > %s)"),
file->name, mtimebuf, nowbuf);
clock_skew_detected = 1;
}
}
}
/* Store the mtime into all the entries for this file. */
if (file->double_colon)
file = file->double_colon;
do
{
/* If this file is not implicit but it is intermediate then it was
made so by the .INTERMEDIATE target. If this file has never
been built by us but was found now, it existed before make
started. So, turn off the intermediate bit so make doesn't
delete it, since it didn't create it. */
if (mtime != (FILE_TIMESTAMP)-1 && file->command_state == cs_not_started
&& !file->tried_implicit && file->intermediate)
file->intermediate = 0;
file->last_mtime = mtime;
file = file->prev;
}
while (file != 0);
return mtime;
}
/* Return the mtime of the file or archive-member reference NAME. */
static FILE_TIMESTAMP
name_mtime (name)
register char *name;
{
struct stat st;
if (stat (name, &st) < 0)
return (FILE_TIMESTAMP) -1;
return FILE_TIMESTAMP_STAT_MODTIME (st);
}
/* Search for a library file specified as -lLIBNAME, searching for a
suitable library file in the system library directories and the VPATH
directories. */
static int
library_search (lib, mtime_ptr)
char **lib;
FILE_TIMESTAMP *mtime_ptr;
{
static char *dirs[] =
{
#ifndef _AMIGA
"/lib",
"/usr/lib",
#endif
#if defined(WINDOWS32) && !defined(LIBDIR)
/*
* This is completely up to the user at product install time. Just define
* a placeholder.
*/
#define LIBDIR "."
#endif
LIBDIR, /* Defined by configuration. */
0
};
static char *libpatterns = NULL;
char *libname = &(*lib)[2]; /* Name without the `-l'. */
FILE_TIMESTAMP mtime;
/* Loop variables for the libpatterns value. */
char *p, *p2;
int len;
char *file, **dp;
/* If we don't have libpatterns, get it. */
if (!libpatterns)
{
int save = warn_undefined_variables_flag;
warn_undefined_variables_flag = 0;
libpatterns = xstrdup (variable_expand ("$(strip $(.LIBPATTERNS))"));
warn_undefined_variables_flag = save;
}
/* Loop through all the patterns in .LIBPATTERNS, and search on each one. */
p2 = libpatterns;
while ((p = find_next_token (&p2, &len)) != 0)
{
static char *buf = NULL;
static int buflen = 0;
static int libdir_maxlen = -1;
char *libbuf = variable_expand ("");
/* Expand the pattern using LIBNAME as a replacement. */
{
char c = p[len];
char *p3, *p4;
p[len] = '\0';
p3 = find_percent (p);
if (!p3)
{
/* Give a warning if there is no pattern, then remove the
pattern so it's ignored next time. */
error (NILF, _(".LIBPATTERNS element `%s' is not a pattern"), p);
for (; len; --len, ++p)
*p = ' ';
*p = c;
continue;
}
p4 = variable_buffer_output (libbuf, p, p3-p);
p4 = variable_buffer_output (p4, libname, strlen (libname));
p4 = variable_buffer_output (p4, p3+1, len - (p3-p));
p[len] = c;
}
/* Look first for `libNAME.a' in the current directory. */
mtime = name_mtime (libbuf);
if (mtime != (FILE_TIMESTAMP) -1)
{
*lib = xstrdup (libbuf);
if (mtime_ptr != 0)
*mtime_ptr = mtime;
return 1;
}
/* Now try VPATH search on that. */
file = libbuf;
if (vpath_search (&file, mtime_ptr))
{
*lib = file;
return 1;
}
/* Now try the standard set of directories. */
if (!buflen)
{
for (dp = dirs; *dp != 0; ++dp)
{
int l = strlen (*dp);
if (l > libdir_maxlen)
libdir_maxlen = l;
}
buflen = strlen (libbuf);
buf = xmalloc(libdir_maxlen + buflen + 2);
}
else if (buflen < strlen (libbuf))
{
buflen = strlen (libbuf);
buf = xrealloc (buf, libdir_maxlen + buflen + 2);
}
for (dp = dirs; *dp != 0; ++dp)
{
sprintf (buf, "%s/%s", *dp, libbuf);
mtime = name_mtime (buf);
if (mtime != (FILE_TIMESTAMP) -1)
{
*lib = xstrdup (buf);
if (mtime_ptr != 0)
*mtime_ptr = mtime;
return 1;
}
}
}
return 0;
}